Skip to main content

Advertisement

Log in

Multifunctional Polymeric Micelles for Enhanced Intracellular Delivery of Doxorubicin to Metastatic Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purposes

To develop multifunctional RGD-decorated poly(ethylene oxide)-b-poly(ester) based micelles and assess their pH-triggered core degradation and targeted drug release in tumor cells that overexpress RGD receptors.

Methods

Novel poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) based copolymers modified with RGD ligands on PEO and pendent functional groups on PCL, i.e., GRGDS-PEO-b-poly(α-benzylcarboxylate-ε-caprolactone) (GRGDS-PEO-b-PBCL) and GRGDS-PEO-b-poly(α-carboxyl-ε-caprolactone) (GRGDS-PEO-b-PCCL), were synthesized. Chemical conjugation of doxorubicin (DOX) to PCCL core produced GRGDS-PEO-b-P(CL-DOX) micellar conjugates, while GRGDS-PEO-b-PBCL were used to physically encapsulate DOX. For both systems, micellar core degradation, drug release, intracellular drug uptake/disposition, and cytotoxicity against B16F10 metastatic cells were investigated.

Results

The PBCL and P(CL-DOX) cores were found resistant to degradation in pH 7.2, but showed 10% and 40% loss in core molecular weight in pH 5.0 within 144 h, respectively. Preferential release of DOX and DOX derivatives from PBCL and P(CL-DOX) cores was noted in pH 5.0, respectively. The GRGDS-modified micelles showed enhanced cellular internalization through endocytosis, increased intracellular DOX release, nuclear localization, and improved cytotoxicity against metastatic B16F10 cells compared to their unmodified counterparts.

Conclusions

The results clearly suggest a promise for the development of multifunctional polymeric micelles with RGD ligand decorated shell and endosomal pH-triggered degradable core for selective DOX delivery to metastatic cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Duncan. Polymer conjugates as anticancer nanomedicines. Nat. Rev. 6:688–701 (2006).

    CAS  Google Scholar 

  2. R. Duncan. The dawning era of polymer therapeutics. Nat. Rev. 2:347–360 (2003).

    CAS  Google Scholar 

  3. M. Ferrari. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer. 5:161–171 (2005) doi:10.1038/nrc1566.

    Article  CAS  Google Scholar 

  4. A. Mahmud, X. B. Xiong, and A. Lavasanifar. Novel self-associating poly(ethylene oxide)-block-poly(epsilon-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules.. 39:9419–9428 (2006) doi:10.1021/ma0613786.

    Article  CAS  Google Scholar 

  5. A. Lavasanifar, J. Samuel, and G. S. Kwon. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv. Drug Deliv. Rev. 54:169–190 (2002) doi:10.1016/S0169–409X(02)00015-7.

    Article  PubMed  CAS  Google Scholar 

  6. K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47:113–131 (2001) doi:10.1016/S0169-409X(00)00124-1.

    Article  PubMed  CAS  Google Scholar 

  7. A. Mahmud, X. B. Xiong, H. M. Aliabadi, and A. Lavasanifar. Polymeric micelles for drug targeting. J. Drug. Target. 15:553–584 (2007) doi:10.1080/10611860701538586.

    Article  PubMed  CAS  Google Scholar 

  8. A. Mahmud, X. B. Xiong, and A. Lavasanifar. Self-associating poly(ethylene oxide)-block-poly(ε-caprolactone) copolymers with carboxyl, benzyl carboxylate and doxorubicin side group: Novel micellar nano-containers and drug conjugates. Eur. J. Pharm. Biopharm., in press (2008).

  9. D. G. Stupackand, and D. A. Cheresh. Integrins and angiogenesis. Curr. Top. Dev. Biol. 64:207–238 (2004) doi:10.1016/S0070-2153(04)64009-9.

    Article  Google Scholar 

  10. J. D. Hoodand, and D. A. Cheresh. Role of integrins in cell invasion and migration. Nat. Rev. 2:91–100 (2002).

    Google Scholar 

  11. J. A. Varnerand, and D. A. Cheresh. Integrins and cancer. Curr. Opin. Cell Biol. 8:724–730 (1996) doi:10.1016/S0955-0674(96)80115-3.

    Article  Google Scholar 

  12. Y. Bae, W. D. Jang, N. Nishiyama, S. Fukushima, and K. Kataoka. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 1:242–250 (2005) doi:10.1039/b500266d.

    Article  PubMed  CAS  Google Scholar 

  13. Y. Bae, N. Nishiyama, and K. Kataoka. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug. Chem. 18:1131–1139 (2007) doi:10.1021/bc060401p.

    Article  PubMed  CAS  Google Scholar 

  14. N. D. Scott, J. F. Walker, and V. L. Hansley. Sodium naphthalene I A new method for the preparation of addition compounds of alkali metals and polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 58:2442–2444 (1936) doi:10.1021/ja01303a022.

    Article  CAS  Google Scholar 

  15. C. Scholz, M. Iijima, Y. Nagasaki, and K. Kataoka. A novel reactive polymeric micelle with aldehyde groups on its surface. Macromolecules. 28:7295–7297 (1995) doi:10.1021/ma00125a040.

    Article  CAS  Google Scholar 

  16. A. Mahmudand, and A. Lavasanifar. The effect of block copolymer structure on the internalization of polymeric micelles by human breast cancer cells. Colloids. Surf. B. Biointerfaces. 45:82–89 (2005) doi:10.1016/j.colsurfb.2005.07.008.

    Article  Google Scholar 

  17. X. B. Xiong, A. Mahmud, H. Uludag, and A. Lavasanifar. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules. 8:874–884 (2007) doi:10.1021/bm060967g.

    Article  PubMed  CAS  Google Scholar 

  18. A. Lavasanifar, J. Samuel, and G. S. Kwon. The effect of alkyl core structure on micellar properties of poly(ethylene oxide)-block-poly(L-aspartamide) derivatives. Colloids. Surf. B. Biointerfaces. 22:115–126 (2001) doi:10.1016/S0927-7765(01)00147-3.

    Article  PubMed  CAS  Google Scholar 

  19. R. Karinaga, K. Koumoto, M. Mizu, T. Anada, S. Shinkai, and K. Sakurai. PEG-appended beta-(1–>3)-D-glucan schizophyllan to deliver antisense-oligonucleotides with avoiding lysosomal degradation. Biomaterials. 26:4866–4873 (2005) doi:10.1016/j.biomaterials.2004.11.031.

    Article  PubMed  CAS  Google Scholar 

  20. M. Oba, S. Fukushima, N. Kanayama, K. Aoyagi, N. Nishiyama, H. Koyama, and K. Kataoka. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alpha(v)beta(3) and alpha(v)beta(5) Integrins. Bioconjug. Chem. 18:1415–1423 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Y. Yamamoto, Y. Nagasaki, M. Kato, and K. Kataoka. Surface charge modulation of poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles: conjugation of charged peptides. Colloid. Surface B. 16:135–146 (1999) doi:10.1016/S0927-7765(99)00065-X.

    Article  CAS  Google Scholar 

  22. Y. Gengand, and D. E. Discher. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J. Am. Chem. Soc. 127:12780–12781 (2005) doi:10.1021/ja053902e.

    Article  Google Scholar 

  23. G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Biodistribution of micelle-forming polymer-drug conjugates. Pharm. Res. 10:970–974 (1993) doi:10.1023/A:1018998203127.

    Article  PubMed  CAS  Google Scholar 

  24. R. Pasqualini, E. Koivunen, and E. Ruoslahti. Peptides in cell adhesion: powerful tools for the study of integrin-ligand interactions. Braz. J. Med. Biol. Res. 29:1151–1158 (1996)

    PubMed  CAS  Google Scholar 

  25. E. Ruoslahti. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 12:697–715 (1996) doi:10.1146/annurev.cellbio.12.1.697.

    Article  PubMed  CAS  Google Scholar 

  26. N. Nasongkla, X. Shuai, H. Ai, B. D. Weinberg, J. Pink, D. A. Boothman, and J. Gao. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed. Engl. 43:6323–6327 (2004) doi:10.1002/anie.200460800.

    Article  PubMed  CAS  Google Scholar 

  27. X. B. Xiong, Y. Huang, W. L. Lu, X. Zhang, H. Zhang, T. Nagai, and Q. Zhang. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J. Control Release. 107:262–275 (2005) doi:10.1016/j.jconrel.2005.03.030.

    Article  PubMed  CAS  Google Scholar 

  28. X. B. Xiong, Y. Huang, W. L. Lu, H. Zhang, X. Zhang, and Q. Zhang. Enhanced intracellular uptake of sterically stabilized liposomal Doxorubicin in vitro resulting in improved antitumor activity in vivo. Pharm. Res. 22:933–939 (2005) doi:10.1007/s11095-005-4588-x.

    Article  PubMed  CAS  Google Scholar 

  29. W. Arap, R. Pasqualini, and E. Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 279:377–380 (1998) doi:10.1126/science.279.5349.377.

    Article  PubMed  CAS  Google Scholar 

  30. K. D. Cowden Dahl, S. E. Robertson, V. M. Weaver, and M. C. Simon. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression. Mol. Biol. Cell. 16:1901–1912 (2005) doi:10.1091/mbc.E04-12-1082.

    Article  PubMed  CAS  Google Scholar 

  31. M. J. Humphries, K. M. Yamada, and K. Olden. Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells. J. Clin. Invest. 81:782–790 (1988) doi:10.1172/JCI113384.

    Article  PubMed  CAS  Google Scholar 

  32. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 50:1693–1700 (1990).

    PubMed  CAS  Google Scholar 

  33. F. Greco, M. J. Vicent, S. Gee, A. T. Jones, J. Gee, R. I. Nicholson, and R. Duncan. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J. Control Release. 117:28–39 (2007) doi:10.1016/j.jconrel.2006.10.012.

    Article  PubMed  CAS  Google Scholar 

  34. Y. Luo, N. J. Bernshaw, Z. R. Lu, J. Kopecek, and G. D. Prestwich. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm. Res. 19:396–402 (2002) doi:10.1023/A:1015170907274.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Sciences and Engineering Council of Canada (NSERC) grant Nos. G121210926 and G121220086. AM was supported by Rx and D HRF/CIHR graduate student research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Lavasanifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, XB., Mahmud, A., Uludağ, H. et al. Multifunctional Polymeric Micelles for Enhanced Intracellular Delivery of Doxorubicin to Metastatic Cancer Cells. Pharm Res 25, 2555–2566 (2008). https://doi.org/10.1007/s11095-008-9673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9673-5

KEY WORDS

Navigation