Skip to main content

Advertisement

Log in

Enhancement in Anti-proliferative Effects of Paclitaxel in Aortic Smooth Muscle Cells upon Co-administration with Ceramide using Biodegradable Polymeric Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Using a combination of paclitaxel (PTX), and the apoptotic signaling molecule, C6-ceramide (CER), the enhancement in anti-proliferative effect of human aortic smooth muscle cells (SMC) was examined by administering in polymeric nanoparticles.

Methods

PTX- and CER-loaded poly(ethylene oxide)-modified poly(epsilon caprolactone) (PEO-PCL) nanoparticles were formulated by solvent displacement and characterized. The uptake and intracellular localization of the nanoparticle in SMC was examined using Z-stack fluorescent confocal microscopy. Anti-proliferative and pro-apoptotic effects of SMC were determined upon administration of PTX and CER, either as single agent or in combination, in aqueous solution and in PEO-PCL nanoparticle formulations.

Results

High encapsulation efficiencies (i.e., >95%) of PTX and CER at 10% (w/w) loading were attained in the PEO-PCL nanoparticles of around 270 nm in diameter. Fluorescence confocal analysis showed that nanoparticle delivery did facilitate cellular uptake and internalization. Additionally, combination of PTX and CER delivery in PEO-PCL nanoparticles was significantly more effective in decreasing the proliferation of SMC, probably by enhancing the apoptotic response.

Conclusions

The results of this study show that combination of PTX and CER when administered in PEO-PCL nanoparticles can significantly augment the anti-proliferative effect in SMC. This strategy may potentially be useful in the treatment of coronary restenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Dangas, and F. Kuepper. Cardiology patient page. Restenosis: repeat narrowing of a coronary artery: prevention and treatment. Circulation. 105:2586–2587 (2002).

    Article  PubMed  Google Scholar 

  2. T. Uwatoku, H. Shimokawa, K. Abe, Y. Matsumoto, T. Hattori, K. Oi, T. Matsuda, K. Kataoka, and A. Takeshita. Application of nanoparticle technology for the prevention of restenosis after balloon injury in rats. Circ. Res. 92:e62–e69 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. K. Ganesan, and B. Balram. Prevention of restenosis after coronary angioplasty [Prevention]. Curr. Opin. Cardiol. 19:500–509 (2004).

    Article  Google Scholar 

  4. S. L. Goldberg, A. Loussararian, J. De Gregorio, C. Di Mario, R. Albiero, and A. Colombo. Predictors of diffuse and aggressive intra-stent restenosis. J. Am. Coll. Cardiol. 37:1019–1025 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. M. Bennett. In-stent stenosis: pathology and implications for the development of drug eluting stents. Heart (BMJ). 89:218–224 (2003).

    Article  Google Scholar 

  6. F. Airoldi, C. Di Mario, G. Stankovic, C. Briguori, E. Bramucci, B. Reimers, D. Ardissino, E. Aurier, D. Tavano, and A. Colombo. Effectiveness of treatment of in-stent restenosis with an 8-French compatible atherectomy catheter. Am. J. Cardiol. 92:725–728 (2003).

    Article  PubMed  Google Scholar 

  7. J. Sharma, R. Kashyap, and A. Sharma. Restenosis following percutaneous transluminal coronary angioplasty among aircrew during intermediate and long term follow up. Ind. J. Aerospace Med. 47:17–22 (2003).

    Google Scholar 

  8. H. J. Rapold, P. R. David, P. Guiteras Val, A. L. Mata, P. A. Crean, and M. G. Bourassa. Restenosis and its determinants in first and repeat coronary angioplasty. Eur. Heart J. 8:575–586 (1987).

    PubMed  CAS  Google Scholar 

  9. M. A. Costa, and D. I. Simon. Molecular basis of restenosis and drug-eluting stents. Circulation. 111:2257–2273 (2005).

    Article  PubMed  Google Scholar 

  10. F. G. Welt, and C. Rogers. Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 22:1769–1776 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. C. P. Regan, P. J. Adam, C. S. Madsen, and G. K. Owens. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J. Clin. Invest. 106:1139–1147 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. S. V. Ranade, K. M. Miller, R. E. Richard, A. K. Chan, M. J. Allen, and M. N. Helmus. Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent. J. Biomed. Mater. Res. A. 71:625–634 (2004).

    Article  PubMed  Google Scholar 

  13. J. D. Adams, K. P. Flora, B. R. Goldspiel, J. W. Wilson, S. G. Arbuck, and R. Finley. Taxol: a history of pharmaceutical development and current pharmaceutical concerns. J. Natl. Cancer Inst. Monogr. 15:141–147 (1993).

    PubMed  Google Scholar 

  14. M. Pennati, A. J. Campbell, M. Curto, M. Binda, Y. Cheng, L. Z. Wang, N. Curtin, B. T. Golding, R. J. Griffin, I. R. Hardcastle, A. Henderson, N. Zaffaroni, and D. R. Newell. Potentiation of paclitaxel-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a possible role for survivin down-regulation. Mol. Cancer. Ther. 4:1328–1337 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. S. J. Sollott, L. Cheng, R. R. Pauly, G. M. Jenkins, R. E. Monticone, M. Kuzuya, J. P. Froehlich, M. T. Crow, E. G. Lakatta, E. K. Rowinsky, et al. Taxol inhibits neointimal smooth muscle cell accumulation after angioplasty in the rat. J. Clin. Invest. 95:1869–1876 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. C. Herdeg, M. Oberhoff, A. Baumbach, A. Blattner, D. I. Axel, S. Schroder, H. Heinle, and K. R. Karsch. Local paclitaxel delivery for the prevention of restenosis: biological effects and efficacy in vivo. J. Am. Coll. Cardiol. 35:1969–1976 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. D. I. Axel, W. Kunert, C. Goggelmann, M. Oberhoff, C. Herdeg, A. Kuttner, D. H. Wild, B. R. Brehm, R. Riessen, G. Koveker, and K. R. Karsch. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation. 96:636–645 (1997).

    PubMed  CAS  Google Scholar 

  18. R. Kolesnick. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110:3–8 (2002).

    PubMed  CAS  Google Scholar 

  19. F. D. Kolodgie, A. Farb, and R. Virmani. Local delivery of ceramide for restenosis: is there a future for lipid therapy? Circ. Res. 87:264–267 (2000).

    PubMed  CAS  Google Scholar 

  20. R. Charles, L. Sandirasegarane, J. Yun, N. Bourbon, R. Wilson, R. P. Rothstein, S. W. Levison, and M. Kester. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ. Res. 87:282–288 (2000).

    PubMed  CAS  Google Scholar 

  21. C. E. Chalfant, B. Ogretmen, S. Galadari, B. J. Kroesen, B. J. Pettus, and Y. A. Hannun. FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J. Biol. Chem. 276:44848–44855 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. L. Brito, and M. Amiji. Nanoparticulate carriers for the treatment of coronary restenosis. Int. J. Nanomed. 2:143–161 (2007).

    Article  CAS  Google Scholar 

  23. V. Labhasetwar, C. Song, W. Humphrey, R. Shebuski, and R. J. Levy. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J. Pharm. Sci. 87:1229–1234 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. C. Song, V. Labhasetwar, X. Cui, T. Underwood, and R. J. Levy. Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. J. Control Release. 54:201–211 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. U. Westedt, L. Barbu-Tudoran, A. K. Schaper, M. Kalinowski, H. Alfke, and T. Kissel. Deposition of nanoparticles in the arterial vessel by porous balloon catheters: localization by confocal laser scanning microscopy and transmission electron microscopy. AAPS Pharm. Sci. 4:E41 (2002).

    Article  Google Scholar 

  26. S. Mukherjee, R. N. Ghosh, and F. R. Maxfield. Endocytosis. Physiol. Rev. 77:759–803 (1997).

    PubMed  CAS  Google Scholar 

  27. J. Gruenberg. The endocytic pathway: a mosaic of domains. Nat. Rev. Mol. Cell. Biol. 2:721–730 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. L. Pelkmans, and A. Helenius. Endocytosis via caveolae. Traffic. 3:311–320 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. S. B. Sieczkarskiand, and G. R. Whittaker. Dissecting virus entry via endocytosis. J. Gen. Virol. 83:1535–1545 (2002).

    Google Scholar 

  30. S. A. Mousavi, L. Malerod, T. Berg, and R. Kjeken. Clathrin-dependent endocytosis. Biochem. J. 377:1–16 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. H. Cohen-Sacks, Y. Najajreh, V. Tchaikovski, G. Gao, V. Elazer, R. Dahan, I. Gati, M. Kanaan, J. Waltenberger, and G. Golomb. Novel PDGFbetaR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene. Ther. 9:1607–1616 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. H. Suh, B. Jeong, R. Rathi, and S. W. Kim. Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethylene oxide)–poly(lactide/glycolide) nanospheres. J. Biomed. Mater. Res. 42:331–338 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. G. M. Lanza, X. Yu, P. M. Winter, D. R. Abendschein, K. K. Karukstis, M. J. Scott, L. K. Chinen, R. W. Fuhrhop, D. E. Scherrer, and S. A. Wickline. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation. 106:2842–2847 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. L. E. van Vlerken, Z. Duan, M. V. Seiden, and M. M. Amiji. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res. 67:4843–4850 (2007).

    Article  PubMed  Google Scholar 

  35. J. S. Chawla, and M. M. Amiji. Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 249:127–138 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. J. S. Chawla, and M. M. Amiji. Cellular uptake and concentrations of tamoxifen upon administration in poly(epsilon-caprolactone) nanoparticles. AAPS Pharm. Sci. 5:E3 (2003).

    Article  Google Scholar 

  37. L. K. Shah, and M. M. Amiji. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm. Res. 23:2638–2645 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm. Res. 22:2107–2114 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. M. S. Chun, S. Y. Lee, and S. M. Yang. Estimation of zeta potential by electrokinetic analysis of ionic fluid flows through a divergent microchannel. J. Colloid. Interface Sci. 266:120–126 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. S. Nsereko, and M. Amiji. Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials. 23:2723–2731 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. R. T. Liggins, and H. M. Burt. Paclitaxel-loaded poly(L-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release. Int. J. Pharm. 282:61–71 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. M. Zaffaroni, R. Frapolli, T. Colombo, R. Fruscio, E. Bombardelli, P. Morazzoni, A. Riva, M. D’Incalci, and M. Zucchetti. High-performance liquid chromatographic assay for the determination of the novel C-Seco-taxane derivative (IDN 5390) in mouse plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 780:93–98 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. H. Devalapally, Z. Duan, M. V. Seiden, and M. M. Amiji. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int. J. Cancer. 121:1830–1838 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, D., Devalapally, H. & Amiji, M. Enhancement in Anti-proliferative Effects of Paclitaxel in Aortic Smooth Muscle Cells upon Co-administration with Ceramide using Biodegradable Polymeric Nanoparticles. Pharm Res 25, 1936–1947 (2008). https://doi.org/10.1007/s11095-008-9614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9614-3

KEY WORDS

Navigation