Skip to main content
Log in

Intra and Inter-Molecular Interactions Dictate the Aggregation State of Irinotecan Co-Encapsulated with Floxuridine Inside Liposomes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The inter/intramolecular interactions between drugs (floxuridine, irinotecan) and excipients (copper gluconate, triethanolamine) in the dual-drug liposomal formulation CPX-1 were elucidated in order to identify the physicochemical properties that allow coordinated release of irinotecan and floxuridine and maintenance of the two agents at a fixed, synergistic 1:1 molar ratio.

Methods

Release of irinotecan and floxuridine from the liposomes was assessed using an in vitro-release assay. Fluorescence, Nuclear Magnetic Resonance spectroscopy (NMR) and UV–Vis were used to characterize the aggregation state of the drugs within the liposomes.

Results

Coordinated release of the drugs from liposomes was disrupted by removing copper gluconate. Approximately 45% of the total irinotecan was detectable in the copper-containing CPX-1 formulation by NMR, which decreased to 19% without copper present in the liposomal interior. Formation of higher order, NMR-silent aggregates was associated with slower and uncoordinated irinotecan release relative to floxuridine and loss of the synergistic drug/drug ratio. Solution spectroscopy and calorimetry revealed that while all formulation components were required to achieve the highest solubility of irinotecan, direct drug-excipient binding interactions were absent.

Conclusions

Long-range interactions between irinotecan, floxuridine and excipients modulate the aggregation state of irinotecan, allowing for simultaneous release of both drugs from the liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, and R. Sasisekharan. Temporal targeting of tumor cells and neavasculature with a nanoscale delivery system. Nature. 436:568–572 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. L. D. Mayer, T. O. Harasym, P. G. Tardi, N. L. Harasym, C. R. Shew, S. A. Johnstone, E. C. Ramsay, M. B. Bally, and A. S. Janoff. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration dictates therapeutic activity in tumor-bearing mice. Mol. Cancer. Ther. 5:1854–1863 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. T. O. Harasym, P. G. Tardi, S. A. Johnstone, L. D. Mayer, M. B. Bally, and A. S. Janoff. Fixed drug ratio liposomes formulations of combination cancer therapeutics. In G. Gregoriadis (ed.), Liposome Technology, 3rd ed., CRC, Boca Raton, FL, 2007, pp. 25–48.

    Google Scholar 

  4. X. Zhao, J. Wu, N. Muthusamy, J. C. Byrd, and R. J. Lee. Liposomal coencapsulated fludarabine and mitoxantrone for lymphoproliferative disorder treatment. J. Pharm. Sci. 97:1508–1572 (2007).

    Article  Google Scholar 

  5. P. G. Tardi, R. C. Gallagher, S. A. Johnstone, N. Harasym, M. Webb, M. B. Bally, and L. D. Mayer. Co-encapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim. Biophys. Acta. 1768:678–687 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. G. Batist, K. Chi, W. Miller, S. Chia, F. Hasanbasic, A. Fisic, L. M. Mayer, C. Swenson, A. S. Janoff, and K. Gelmon. Phase I study of CPX-1, a fixed ratio formulation of irinotecan (iri) and floxuridine (flox), in patients with advanced solid tumors. ASCO Annual Meeting. 2014 (2006).

  7. G. Batist, W. Miller, L. Mayer, A. Janoff, C. Swenson, A. Louie, K. Chi, S. Chia, and K. Gelmon. Ratiometric dosing of irinotecan (IRI) and floxuridine (FLOX) in a phase I trial: A new approach for enhancing the activity of combination chemotherapy. J. Clin. Oncol. 25:109s (2007).

    Google Scholar 

  8. T. O. Harasym, P. G. Tardi, N. L. Harasym, P. Harvie, S. Johnstone, and L. D. Mayer. Increased preclinical efficacy of irinotecan and floxuridine co-encapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol. Res. 16:361–374 (2007).

    PubMed  Google Scholar 

  9. L. D. Mayer, and A. S. Janoff. Optimizing combination chemotherapy by controlling drug ratios. Mol. Interv. 7:216–223 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. Y. Barenholz, S. Amselem, D. Goren, R. Cohen, D. Gelvan, A. Samuni, E. B. Golden, and A. Gabizon. Stability of liposomal doxorubicin formulations: problems and prospects. Med. Res. Rev. 13:449–491 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. M. Grit, and D. J. Crommelin. Chemical stability of liposomes: Implications for their physical stability. Chem. Phys. Lipids. 64:3–18 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. C. O. Noble, M. T. Krauze, D. C. Drummond, Y. Yamashita, R. Saito, M. S. Berger, D. B. Kirpotin, K. S. Bankiewicz, and J. W. Park. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res. 66:2801–2806 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. D. C. Drummond, C. O. Noble, Z. Guo, K. Hong, J. W. Park, and D. B. Kirpotin. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 66:2171–2177 (2006).

    Article  Google Scholar 

  14. A. S. Taggar, J. Alnajim, M. Anantha, A. Thomas, M. Webb, E. Ramsey, and M. B. Bally. Copper-topotecan complexation mediates drug accumulation into liposomes. J. Control. Release. 114:78–88 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. A. Dicko, P. G. Tardi, X. Xie, and L. D. Mayer. Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int. J. Pharm. 337:219–228 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. M. Almgren, K. Edwards, and G. Karlsson. Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf. A. 174:3–21 (2000).

    Article  CAS  Google Scholar 

  17. J. Cavanagh, A. G. Palmer III, W. J. Fairbrother, N. J. Skelton, and M. Rance. Protein NMR Spectroscopy: Principles and Practice. Academic, San Diego, 1996.

    Google Scholar 

  18. G. S. Rule, and T. K. Hitchens. Fundamentals of Protein NMR Spectroscopy. Springer, Berlin, 2005.

    Google Scholar 

  19. T. Wiseman, S. Williston, J. F. Brandts, and L. N. Lin. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179:131–137 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. R. Aiyama, H. Nagai, S. Sawasa, T. Yokokura, H. Itokawa, and M. Nakanishi. Determination of self-association of irinotecan hydrochloride (CPT-11) in aqueous solution. Chem. Pharm. Bull. 40:2810–2813 (1992).

    CAS  Google Scholar 

  21. I. Chourpa, J.-M. Millot, G. D. Sockalingum, J.-F. Riou, and M. Manfait. Kinetics of lactone hydrolysis in antitumor drugs of camptothecin series as studied by fluorescence spectroscopy. Biochim. Biophys. Acta. 1379:353–366 (1998).

    PubMed  CAS  Google Scholar 

  22. I. Nabiev, F. Fleury, I. Kudelina, Y. Pommier, F. Charton, J.-F. Riou, A. J. Alix, and M. Manfait. Spectroscopic and biochemical characterization of self-aggregates formed by antitumor drugs of the camptothecin family. Biochem. Pharmacol. 55:1163–1174 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. E. Ramsay, J. Alnajim, M. Anantha, J. Zastre, H. Yan, M. Webb, D. Waterhouse, and M. Bally. A novel liposomal irinotecan formulation with significant anti-tumor activity: Use of the divalent cation ionophore A23187 and copper-containing liposomes to improve drug retention. Eur. J. Pharm. Biopharm. (2008) in press.

  24. L. Pecsok, and R. S. Juvet Jr. The gluconate complexes. I. Copper gluconate in strongly basic media. J. Am. Chem. Soc. 77:202–206 (1955).

    Article  CAS  Google Scholar 

  25. H. Yu. Extending the size limit of protein nuclear magnetic resonance. Proc. Natl. Acad. Sci. U. S. A. 96:332–334 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. F. Perrin. The Brownien [sic] movement of an ellipsoide [sic]—The dielectric dispersion of ellipsoidal molecules. J. de Phys. et Rad. 5:497–511 (1934).

    Article  CAS  Google Scholar 

  27. F. Perrin. Brownian movement of an ellipsoid (ii): free rotation and fluorescence depolarization. Translation and diffusion of ellipsoidal molecules. J. de Phys. et Rad. 7:1–11 (1936).

    Article  CAS  Google Scholar 

  28. G. A. Barrall, K. Schmidt-Rohr, Y. K. Lee, K. Landfester, H. Zimmermann, G. C. Chingas, and A. Pines. Rotational diffusion measurements of suspended colloidal particles using two-dimensional exchange nuclear magnetic resonance. J. Chem. Phys. 104:509–520 (1996).

    Article  CAS  Google Scholar 

  29. J. R. Lakowicz. Principles of Fluorescence Spectroscopy (3rd ed.). Springer Science + Business Media, Singapore, 2006.

    Google Scholar 

  30. E. C. Chung, and J. Chung. Rotational diffusion coefficient of rod-like polymer with a slight flexibility in semidilute and concentrated solutions. Poly. Bull. 21:105–112 (1989).

    Article  CAS  Google Scholar 

  31. L. Onsager. The effects of shape on the interaction of colloidal particles. Ann. N.Y. Acad. Sci. 51:627–659 (1949).

    Article  CAS  Google Scholar 

  32. A. R. Gennaro (Ed.). Remington: The Science and Practice of Pharmacy, 20th ed., Lippincott Williams & Wilkins, Philadelphia, 2000.

Download references

Acknowledgment

The authors would like to thank Dr. Sharon Johnstone for helpful discussions and Brianne O’Callaghan for technical support. We would like to recognize the superior NMR service provided by Drs. Maria Ezhova and Nick Burlinson at the University of British Columbia NMR Facility. We are also grateful to Goran Karlsson and Dr. Katarina Edwards at Uppsala University in Sweden for the cryo-EM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Mayer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (DOC 1.33 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dicko, A., Frazier, A.A., Liboiron, B.D. et al. Intra and Inter-Molecular Interactions Dictate the Aggregation State of Irinotecan Co-Encapsulated with Floxuridine Inside Liposomes. Pharm Res 25, 1702–1713 (2008). https://doi.org/10.1007/s11095-008-9561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9561-z

Key words

Navigation