Skip to main content
Log in

Microdosing Assessment to Evaluate Pharmacokinetics and Drug Metabolism in Rats Using Liquid Chromatography-Tandem Mass Spectrometry

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the sensitivity requirement for LC-MS/MS as an analytical tool to support human microdosing study with sub-pharmacological dose, investigate proportionality of pharmacokinetics from the microdose to therapeutic human equivalent doses in rats and characterize circulating metabolites in rats administered with the microdose.

Materials and Methods

Five drugs of antipyrine, metoprolol, carbamazepine, digoxin and atenolol were administered orally to male Sprague–Dawley rats at 0.167, 1.67, 16.7, 167 and 1,670 μg/kg doses. Plasma samples were extracted using either solid phase extraction or liquid–liquid extraction, and analyzed using LC-MS/MS.

Results

Using 100 μl of plasma sample, the lower limit of quantitation for antipyrine (10 pg/ml), carbamazepine (1 pg/ml), metoprolol (5 pg/ml), atenolol (20 pg/ml), and digoxin (5 pg/ml) were achieved using an API 5000™. Proportional pharmacokinetics were observed from 0.167 μg/kg to 1,670 μg/kg for antipyrine and carbamazepine and from 1.67 to 1,670 μg/kg for atenolol and digoxin, while metoprolol exhibited a non-proportional pharmacokinetics relationship. Several metabolites of carbamazepine were characterized in plasma from rats dosed at 1.67 μg/kg using LC-MS/MS.

Conclusions

This study has shown the promise of sensitive LC-MS/MS method to support microdose pharmacokinetics and drug metabolism studies in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Food and Drug Administration. Guidance for industry, investigators, and reviewers—exploratory IND studies. January (2006).

  2. European Medicines Agency (EMEA), Committee for Medicinal Products for Human Use (CHMP). 2004. Position paper on non-clinical safety studies to support clinical trials with a single microdose. CPMP, SWP, 2599, 02, Rev 1, London. 23 June (2004).

  3. R. C. Garner, and G. Lappin. Commentary, the phase 0 microdosing concept. Br. J. Clin. Pharmacol. 61(4):367–370 (2006).

    Article  PubMed  Google Scholar 

  4. G. R. Zanni, and J. Y. Wick. Microdosing: the new pharmacokinetic paradigm? Consult Pharm. 21(10):756–776 (2006).

    PubMed  Google Scholar 

  5. R. C. Garner. Less is more: the human microdosing concept. Drug Discov. Today 10(7):449–451 (2005).

    Article  PubMed  Google Scholar 

  6. G. Lappin, and R. C. Garner. The use of accelerator mass spectrometry to obtain early human ADME/PK data. Expert Opin. Drug Metab. Toxicol. 1(1):23–31 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. G. Lappin, W. Kuhnz, R. Jochemsen, J. Kneer, A. Chaudhary, B. Oosterhuis, W. J. Drijfhout, M. Rowland, and R. C. Garner. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with five drugs. Clin. Pharmacol. Ther. 80(3):203–215 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. P. Sandhu, J. S. Vogel, M. J. Rose, E. A. Ubick, J. E. Brunner, M. A. Wallace, J. K. Adelsberger, M. P. Baker, P. T. Henderson, P. G. Pearson, and T. A. Baillie. Evaluation of microdosing strategies for studies in preclinical drug development: demonstration of linear pharmacokinetics in dogs of a nucleoside analog over a 50-fold dose range. Drug Metab. Dispos. 32(11):1254–1259 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Food and Drug Administration. Safety Testing of Drug Metabolites. June (2005).

  10. I. R. Wilding, and J. A. Bell. Improved early clinical development through human microdosing studies. DDT. 10(13):890–894 (2005).

    PubMed  Google Scholar 

  11. S. K. Balani, N. V. Nagaraja, M. G. Qian, A. O. Costa, J. S. Daniels, H. Yang, P. R. Shimoga, J. T. Wu, L. S. Gan, F. W. Lee, and G. T. Miwa. Evaluation of Microdosing to assess pharmacokinetic linearity in rats using liquid chromatography-tandem mass spectrometry. Drug Metab. Dispos. 34(3):384–388 (2006).

    PubMed  CAS  Google Scholar 

  12. M. A. McLean, C. J. Tam, M. T. Baratta, C. L. Holliman, R. M. Ings, and G. R. Galluppi. Accelerating drug development: methodology to support first-in-man pharmacokinetics studies by the use of drug candidate microdosing. Drug Dev. Res. 68:14–22 (2007).

    Article  CAS  Google Scholar 

  13. C. Y. Wu, and L. Z. Benet. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22(1):11–23 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. B. K. Park. Prediction of metabolic drug interactions involving beta-adrenoceptor blocking drugs. Br. J. Clin Pharmacol. 17(Suppl 1):3S–10S (1984).

    PubMed  Google Scholar 

  15. D. G. McDevitt. Comparison of pharmacokinetic properties of beta-adrenoceptor blocking drugs. Eur. Heart J. 8(Suppl M):9–14 (1987).

    Google Scholar 

  16. L. Bertilsson, and T. Tomson. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clin. Pharmacokinet. 11(3):177–198 (1986).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Tanigawara. Role of P-glycoprotein in drug disposition. Ther. Drug Monit. 22(1):137–140 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. S. A. Coolen, T. Ligor, M. van Lieshout, and F. A. Huf. Determination of phenolic derivatives of antipyrine in plasma with solid-phase extraction and high-performance liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 732(1):103–113 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Zhu, H. Chiang, M. Wulster-Radcliffe, R. Hilt, P. Wong, C. B. Kissinger, and P. T. Kissinger. Liquid chromatography/tandem mass spectrometry for the determination of carbamazepine and its main metabolite in rat phasma utilizing an automated blood sampling system. J. Pharm. Biomed. Anal. 38(1):119–125 (2005).

    PubMed  Google Scholar 

  20. N. Sarapa, P. H. Hsyu, G. Lappin, and R. C. Garner. The application of accelerator mass spectrometry to absolute bioavailability studies in humans: simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers. J. Clin. Pharmacol. 45(10):1198–1205 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. K. Lertratanangkoon, and M. G. Horning. Metabolism of carbamazepine. Drug Metab. Dispos. 10(1):1–10 (1982).

    PubMed  CAS  Google Scholar 

  22. P. Myllynen, P. Pienimaki, H. Raunio, and K. Vahakangas. Microsomal metabolism of carbamazepine and oxcarbazepine in liver and placenta. Hum. Exp. Toxicol. 17(12):668–676 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Van Dinh and his group at Allergan for providing animal dosing and blood sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J., Ouyang, H., Aiello, M. et al. Microdosing Assessment to Evaluate Pharmacokinetics and Drug Metabolism in Rats Using Liquid Chromatography-Tandem Mass Spectrometry. Pharm Res 25, 1572–1582 (2008). https://doi.org/10.1007/s11095-008-9555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9555-x

Key words

Navigation