Skip to main content
Log in

Anomalous Particle Size Shift During Post-milling Storage

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the anomalous phenomenon of particle size shift during post-milling storage.

Materials and Methods

Crystallised and ball-milled adipic acid were stored under different humidity conditions. Analyses were carried out to characterise changes in particle size distribution (laser diffraction), morphology (SEM), bulk flow properties (annular shear tester), surface adhesion forces (AFM) and crystallinity (PXRD and DVS).

Results

It was observed that the particle size distribution of milled adipic acid can shift to finer fractions, remain unchanged, or even shift to coarser fractions depending on storage conditions. SEM analysis showed that milled adipic acid is composed of agglomerates, which can undergo de-aggregation or further agglomeration via re-crystallisation. Empirical analysis ruled out the effects of electrostatic charges on the particle size shift. In addition, an improvement in powder flow in terms of bulk tensile strength was seen for milled adipic acid stored under high relative humidity but not under low humidity.

Conclusions

Storage of milled adipic acid below the critical relative humidity led to localised disintegration from the agglomerate surface and particle size reduction, which was not influenced by moisture sorption or loss. This evidence supports that “stress relaxation” mechanism behind particle breakage of post-milled particles. Appropriate storage conditions are important in maintaining the stability of milled powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Chikhalia, R. T. Forbes, R. A. Storey, and M. Ticehurst. The effect of crystal morphology and mill type on milling induced crystal disorder. Eur. J. Pharm. Sci. 27:19–26 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. M. D. Ticehurst, P. A. Basford, C. I. Dallman, T. M. Lukas, P. V. Marshall, G. Nichols, and D. Smith. Characterisation of the influence of micronisation on the crystallinity and physical stability of revatropate hydrobromide. Int. J. Pharm. 193:247–259 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. G. H. Ward, and R. K. Shultz. Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm. Res. 12:773–779 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. K. B. Pfeiffer, H. Haeusler, P. Grass, and P. Langguth. Influence on particle growth of salbutamol sulfate. Drug Dev. Ind. Pharm. 29:1077–1084 (2003).

    Article  Google Scholar 

  5. K. B. Pfeiffer, P. Langguth, P. Grass, and H. Haeusler. Influence of mechanical activation on the physical stability of salbutamol sulphate. Eur. J. Pharm. Biopharm. 56:393–400 (2003).

    Article  Google Scholar 

  6. V. Joshi, D. Sarvajna, and G. H. Ward. Increase in the specific surface area of budesonide during storage postmicronization. Pharm. Res. 19:7–12 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. L. Mackin, S. Sartnurak, I. Thomas, and S. Moore. The impact of low levels of amorphous material (<5%) on the blending characteristics of a direct compression formulation. Int. J. Pharm. 231:213–226 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. L. Mackin, R. Zanon, J. M. Park, K. Foster, H. Opalenik, and M. Demonte. Quantification of low levels (<10%) of amorphous content in micronised active batches using dynamic vapour sorption and isothermal microcalorimetry. Int. J. Pharm. 231:227–236 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. P. Begat, P. M. Young, S. Edge, J. S. Kaerger, and R. Price. The effect of mechanical processing on surface stability of pharmaceutical powders: visualization by atomic force microscopy. J. Pharm. Sci. 92:611–619 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. J. Subero, and M. Ghadiri. Breakage patterns of agglomerates. Powder Technol. 120:232–243 (2001).

    Article  CAS  Google Scholar 

  11. K. Y. Chow, J. Go, M. Mehdizadeh, and D. J. W. Grant. Modification of adipic acid crystals: influence of growth in the presence of fatty acid additives on crystal properties. Int. J. Pharm. 20:3–24 (1984).

    Article  CAS  Google Scholar 

  12. G. Steele. Preformulation as an aid to product design in early drug development. In M. Gibson (ed.), Pharmaceutical Preformulation and Formulation: A Practical Guide from Candidate Drug Selection to Commercial Dosage Form, Interpharm/CRC, Boca Raton, 2004, pp. 175–289.

    Google Scholar 

  13. T. R. Keel, C. Thompson, M. C. Davies, S. J. B. Tendler, and C. J. Roberts. AFM studies of the crystallization and habit modification of an excipient material, adipic acid. Int. J. Pharm 280:185–198 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Organisation Internationale de Métrologie Légale (OIML). The scale of relative humidity of air certified against saturated salt solutions. OIML: R121 (1996).

  15. M. Mathlouthi, and B. Roge. Water vapour sorption isotherms and the caking of food powders. Food Chem. 82:61–71 (2003).

    Article  CAS  Google Scholar 

  16. W. Pietsch. Agglomeration Process: Phenomena, Technologies, Equipment. Wiley-VCH, Weinheim Germany, 2002, pp. 35–59.

    Google Scholar 

  17. M. Suzuki. Powder mechanics. In K. Gotoh, H. Masuda, and K. Higashitani (eds.), Powder Technology Handbook, Marcel Dekker, New York, 1997, pp. 361–369.

    Google Scholar 

  18. R. Boerefin, Z. Ning, and M. Ghadiri. Disintegration of weak lactose agglomerates for inhalation applications. Int. J. Pharm. 172:199–209 (1998).

    Article  Google Scholar 

  19. A. Samimi, R. Ghadiri, R. Boerefin, A. Groot, and R. Kohlus. Effect of structural characteristics on impact breakage of agglomerates. Powder Technol. 130:428–435 (2003).

    Article  CAS  Google Scholar 

  20. K. Umprayn, and R. W. Mendes. Hygroscopicity and moisture adsorption-kinetics of pharmaceutical solids: a review. Drug Dev. Ind. Pharm. 13:653–693 (1987).

    Article  CAS  Google Scholar 

  21. A. S. Gerhardt, C. Ahlneck, and G. Zografi. Assessment of disorder in crystalline solids. Int. J. Pharm. 101:237–247 (1994).

    Article  Google Scholar 

  22. R. Huettenrauch, S. Fricke, and P. Zielke. Mechanical activation of pharmaceutical systems. Pharm. Res. 2:302–306 (1985).

    Article  Google Scholar 

  23. T. E. Tarara, M. S. Hartman, H. Gill, A. A. Kennedy, and J. G. Weers. Characterization of suspension-based metered dose inhaler formulations composed of spray dried budesonide microcrystals dispersed in HFA-134a. Pharm. Res. 21:1607–1614 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. J. R. Coury, and M. L. Aguiar. Rupture of dry agglomerates. Powder Technol 85:37–43 (1995).

    Article  CAS  Google Scholar 

  25. R. Weichert. Anwendung von Fehlstellenstatistik und Bruchmechanik zur Bescreibung von Zerkleinerungsvorgaengen. Zement-Kalk-Gips 45:1–8 (1992).

    CAS  Google Scholar 

  26. F. M. Thomson. Storage of particulate solids. In M. E. Fayed, and L. Otten (eds.), Handbook of Powder Science, Chapman & Hall, New York, 1997, pp. 416–427.

    Google Scholar 

  27. H. Pasley, P. Haloulos, and S. Ledig. Stickiness—a comparison of test methods and characterization parameters. Dry. Technol. 13:1587–1601 (1995).

    Article  CAS  Google Scholar 

  28. J. Staniforth. Powder flow. In A. E. Aulton (ed.), Pharmaceutics: The Science of Dosage Form Design, Churchhill Livingstone, Spain, 2001, pp. 197–210.

    Google Scholar 

  29. R. Jones. From single particle AFM studies of adhesion and friction to bulk flow: forging the links. Granul. Matter 4:191–204 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Junwei, Chin Lee, Ron Lim, Ai Tee, Prashant, Lay Yong, Gary Liu and Wenyi for their contribution in particle characterisation and Aaron Yuen for assisting in theoretical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Kiong Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, W.K., Kwek, J.W. & Tan, R.B.H. Anomalous Particle Size Shift During Post-milling Storage. Pharm Res 25, 1175–1185 (2008). https://doi.org/10.1007/s11095-007-9497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9497-8

Key words

Navigation