Skip to main content
Log in

Drug Elimination Kinetics Following Subconjunctival Injection Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine the elimination rates of subconjunctivally injected model drugs using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

Methods

Gadolinium-diethylenetriaminopentaacetic acid (Gd-DTPA) and gadolinium-albumin (Gd-albumin) were injected in rabbits. Experiments were performed in vivo and post mortem and injection volumes of 200 and 600 μl were administered. Signal intensity values from MR images were converted to concentration of contrast agent to determine the mass clearance rates from subconjunctival space.

Results

Injection volume did not have a significant effect on clearance rate for both Gd-DTPA and Gd-albumin. The clearance rate of Gd-DTPA in vivo was about nine times faster than that post mortem. The in vivo and post mortem clearance rates of Gd-albumin were not significantly different. The in vivo half-life of Gd-DTPA was about 22 min while that of Gd-albumin was about 5.3 h.

Conclusions

DCE-MRI was used to quantitatively compare the subconjunctival clearance rates of Gd-DTPA and Gd-albumin. Dynamic clearance mechanisms present in vivo significantly reduced the subconjunctival concentration of Gd-DTPA but not Gd-albumin. Lymphatic clearance does not seem to be as significant as clearance by blood, as evidenced by data from Gd-albumin injections. Larger injection volumes may allow for longer retention times and prolonged release of drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. A. Gaudio. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul. Immunol. Inflamm. 12:169–192 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. R. J. Morris, D. McLeod, and Z. J. Gregor. Subconjunctival injections of antibiotics are used increasingly at the conclusion of intraocular and extraocular procedures. Eye 3(Pt 6):860–861 (1989).

    PubMed  Google Scholar 

  3. H. J. McCartney, I. O. Drysdale, A. G. Gornall, and P. K. Basu. An autoradiographic study of the penetration of subconjunctivally injected hydrocortisone into the normal and inflamed rabbit eye. Invest. Ophthalmol. 4:297–302 (1965).

    PubMed  CAS  Google Scholar 

  4. O. Weijtens, E. J. Feron, R. C. Schoemaker, A. F. Cohen, E. G. Lentjes, F. P. Romijn, and J. C. van Meurs. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am. J. Ophthalmol. 128:192–197 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. M. Barza, A. Kane, and J. L. Baum. Regional differences in ocular concentration of gentamicin after subconjunctival and retrobulbar injection in the rabbit. Am. J. Ophthalmol. 83:407–413 (1977).

    PubMed  CAS  Google Scholar 

  6. A. Tsuji, I. Tamai, and K. Sasaki. Intraocular penetration kinetics of prednisolone after subconjunctival injection in rabbits. Ophthalmic Res. 20:31–43 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. T. W. Kim, J. D. Lindsey, M. Aihara, T. L. Anthony, and R. N. Weinreb. Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest. Ophthalmol. Vis. Sci. 43:1809–1816 (2002).

    PubMed  Google Scholar 

  8. P. H. Kalina, J. C. Erie, and L. Rosenbaum. Biochemical quantification of triamcinolone in subconjunctival depots. Arch. Ophthalmol. 113:867–869 (1995).

    PubMed  CAS  Google Scholar 

  9. D. M. Maurice, and Y. Ota. The kinetics of subconjunctival injections. Jpn. J. Ophthalmol. 22:95–100 (1978).

    Google Scholar 

  10. S. K. Li, S. A. Molokhia, and E. K. Jeong. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging. Pharm. Res. 21:2175–2184 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. B. Reisfeld, S. Blackband, V. Calhoun, S. Grossman, S. Eller, and K. Leong. The use of magnetic resonance imaging to track controlled drug release and transport in the brain. Magn. Reson. Imaging. 11:247–252 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. B. A. Berkowitz, Y. Sato, C. A. Wilson, and E. de Juan. Blood–retinal barrier breakdown investigated by real-time magnetic resonance imaging after gadolinium-diethylenetriaminepentaacetic acid injection. Invest. Ophthalmol. Vis. Sci. 32:2854–2860 (1991).

    PubMed  CAS  Google Scholar 

  13. E. L. Arrindell, J. C. Wu, M. D. Wolf, S. Nanda, D. P. Han, E. C. Wong, G. W. Abrams, W. F. Mieler, and J. S. Hyde. High-resolution magnetic resonance imaging evaluation of blood–retinal barrier integrity following transscleral diode laser treatment. Arch. Ophthalmol. 113:96–102 (1995).

    PubMed  CAS  Google Scholar 

  14. B. A. Berkowitz, R. Roberts, H. Luan, J. Peysakhov, X. Mao, and K. A. Thomas. Dynamic contrast-enhanced MRI measurements of passive permeability through blood retinal barrier in diabetic rats. Invest. Ophthalmol. Vis. Sci. 45:2391–2398 (2004).

    Article  PubMed  Google Scholar 

  15. W. E. Plehwe, D. W. McRobbie, R. A. Lerski, and E. M. Kohner. Quantitative magnetic resonance imaging in assessment of the blood–retinal barrier. Invest. Ophthalmol. Vis. Sci. 29:663–670 (1988).

    PubMed  CAS  Google Scholar 

  16. H. Kim, M. R. Robinson, M. J. Lizak, G. Tansey, R. J. Lutz, P. Yuan, N. S. Wang, and K. G. Csaky. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 45:2722–2731 (2004).

    Article  PubMed  Google Scholar 

  17. S. H. Kim, C. J. Galban, R. J. Lutz, R. L. Dedrick, K. G. Csaky, M. J. Lizak, N. S. Wang, G. Tansey, and M. R. Robinson. Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 48:808–814 (2007).

    Article  PubMed  Google Scholar 

  18. H. Kim, M. J. Lizak, G. Tansey, K. G. Csaky, M. R. Robinson, P. Yuan, N. S. Wang, and R. J. Lutz. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann. Biomed. Eng. 33:150–164 (2005).

    Article  PubMed  Google Scholar 

  19. M. R. Robinson, S. S. Lee, H. Kim, S. Kim, R. J. Lutz, C. Galban, P. M. Bungay, P. Yuan, N. S. Wang, J. Kim, and K. G. Csaky. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp. Eye Res. 82:479–487 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. A. Supersaxo, W. R. Hein, and H. Steffen. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm. Res. 7:167–169 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. A. C. Amrite, and U. B. Kompella. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J. Pharm. Pharmacol. 57:1555–1563 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. D. N. McLennan, C. J. H. Porter, and S. A. Charman. Subcutaneous drug delivery and the role of the lymphatics. Drug Discovery Today: Technologies. 2:89 (2005).

    Article  CAS  Google Scholar 

  23. L. D. Samuels. Lymphoscintigraphy. Lymphology. 20:4–9 (1987).

    PubMed  CAS  Google Scholar 

  24. M. K. Nawaz, M. M. Hamad, H. M. Abdel-Dayem, S. Sadek, and B. G. Eklof. Tc-99m human serum albumin lymphoscintigraphy in lymphedema of the lower extremities. Clin. Nucl. Med. 15:794–799 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. S. J. Pain, R. S. Nicholas, R. W. Barber, J. R. Ballinger, A. D. Purushotham, P. S. Mortimer, and A. M. Peters. Quantification of lymphatic function for investigation of lymphedema: depot clearance and rate of appearance of soluble macromolecules in blood. J. Nucl. Med. 43:318–324 (2002).

    PubMed  Google Scholar 

  26. G. F. Warner, E. L. Dobson, N. Pace, M. E. Johnston, and C. R. Finney. Studies of human peripheral blood flow; the effect of injection volume on the intramuscular radiosodium clearance rate. Circulation. 8:732–734 (1953).

    PubMed  CAS  Google Scholar 

  27. R. B. Sund, and J. Schou. The determination of absorption rates from rat muscles: An experimental approach to kinetic descriptions. Acta Pharm. Toxicol. (Copenh). 21:313–325 (1964).

    CAS  Google Scholar 

  28. J. Blaser, H. L. Rieder, and R. Luthy. Interface-area-to-volume ratio of interstitial fluid in humans determined by pharmacokinetic analysis of netilmicin in small and large skin blisters. Antimicrob. Agents. Chemother. 35:837–839 (1991).

    PubMed  CAS  Google Scholar 

  29. K. Hirano, T. Ichihashi, and H. Yamada. Studies on the absorption of practically water-insoluble drugs following injection V: Subcutaneous absorption in rats from solutions in water immiscible oils. J. Pharm. Sci. 71:495–500 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. A. J. Fischman, N. M. Alpert, J. W. Babich, and R. H. Rubin. The role of positron emission tomography in pharmacokinetic analysis. Drug Metab. Rev. 29:923–956 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. S. R. Cherry. Fundamentals of positron emission tomography and applications in preclinical drug development. J. Clin. Pharmacol. 41:482–491 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. O. Langer, and M. Muller. Methods to assess tissue-specific distribution and metabolism of drugs. Curr. Drug Metab. 5:463–481 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. R. Hustinx, S. L. Eck, and A. Alavi. Potential applications of PET imaging in developing novel cancer therapies. J. Nucl. Med. 40:995–1002 (1999).

    PubMed  CAS  Google Scholar 

  34. M. Dolovich, and R. Labiris. Imaging drug delivery and drug responses in the lung. Proc. Am. Thorac. Soc. 1:329–337 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Robert L. Dedrick for insightful discussion and Dr. Craig J. Galban for assistance with image analysis. Veterinary technical expertise provided by Mark Lawson and Denise Parker is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Csaky, K.G., Wang, N.S. et al. Drug Elimination Kinetics Following Subconjunctival Injection Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Pharm Res 25, 512–520 (2008). https://doi.org/10.1007/s11095-007-9408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9408-z

Key words

Navigation