Skip to main content

Advertisement

Log in

Peritoneal Macrophage Uptake, Pharmacokinetics and Biodistribution of Macrophage-Targeted PEG-fMLF (N-Formyl-Methionyl-Leucyl-Phenylalanine) Nanocarriers for Improving HIV Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To assess in vivo macrophage targeting potential of PEG-fMLF nanocarriers and to investigate their biodistribution, peritoneal macrophage uptake, and pharmacokinetics.

Methods

Multiple copies of fMLF were conjugated to purchased and novel (branched, peptide-based) PEG nanocarriers. Peritoneal macrophage uptake was evaluated in mice 4 hours after IP administration of fluorescence-labeled PEG-fMLF nanocarriers. Pharmacokinetics and biodistribution were determined in rats after IV administration of tritiated PEG-fMLF nanocarriers.

Results

Attachment of one, two, or four fMLF copies increased uptake in macrophages by 3.8-, 11.3-, and 23.6-fold compared to PEG without fMLF. Pharmacokinetic properties and tissue distribution also differed between nanocarriers with and without fMLF. Attachment of fMLF residues increased the t1/2 of PEG5K by threefold but decreased the t1/2 of PEG20K by 40%. Attachment of fMLF increased accumulation of nanocarriers into macrophages of liver, kidneys and spleen. However, on a molar basis, penetration was equivalent suggesting nanocarrier size and targeting moieties are important determinants.

Conclusions

These results demonstrate the feasibility for targeting macrophages, a primary HIV reservoir site. However, these studies also suggest that balancing peripheral tissue penetration (a size-dependent phenomenon) versus target cell uptake specificity remains a challenge to overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. M. Vandamme, K. Van Vaerenbergh, and E. De Clercq. Anti-human immunodeficiency virus drug combination strategies. Antivir. Chem. Chemother. 9:187–203 (1998).

    PubMed  CAS  Google Scholar 

  2. D. R. Bangsberg, F. M. Hecht, E. D. Charlebois, A. R. Zolopa, M. Holodniy, L. Sheiner, J. D. Bamberger, M. A. Chesney, and A. Moss. Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an indigent population. AIDS 14:357–366 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. L. K. Schrager and M. P. D’Souza. Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 280:67–71 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. D. D. Richman. HIV chemotherapy. Nature 410:995–1001 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. R. Langer. Drug delivery and targeting. Nature 392:5–10 (1998).

    PubMed  CAS  Google Scholar 

  6. R. Langer. Drug delivery. Drugs on target. Science 293:58–59 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. V. P. Torchilin. Drug targeting. Eur. J. Pharm. Sci. 11(Suppl 2):S81–S91 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. H. Schuitemaker, N. A. Kootstra, R. E. de Goede, F. de Wolf, F. Miedema, and M. Tersmette. Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture. J. Virol. 65:356–363 (1991).

    PubMed  CAS  Google Scholar 

  9. S. Aquaro, R. Calio, J. Balzarini, M. C. Bellocchi, E. Garaci, and C. F. Perno. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res. 55:209 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. F. Ahsan, I. P. Rivas, M. A. Khan, and A. I. Torres Suarez. Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J. Control Release. 79:29–40 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. T. Igarashi, C. R. Brown, Y. Endo, A. Buckler-White, R. Plishka, N. Bischofberger, V. Hirsch, and M. A. Martin. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans. Proc. Natl. Acad. Sci. U S A 98:658 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. D. Marras, L. A. Bruggeman, F. Gao, N. Tanji, M. M. Mansukhani, A. Cara, M. D. Ross, G. L. Gusella, G. Benson, V. D. D’Agati, B. H. Hahn, M. E. Klotman, and P. E. Klotman. Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. Nat. Med. 8:522–526 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. R. W. Price, B. Brew, J. Sidtis, M. Rosenblum, A. C. Scheck, and P. Cleary. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239:586–592 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. D. D. Ho, T. R. Rota, R. T. Schooley, J. C. Kaplan, J. D. Allan, J. E. Groopman, L. Resnick, D. Felsenstein, C. A. Andrews, and M. S. Hirsch. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N. Engl. J. Med. 313:1493–1497 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. J. Stebbing, B. Gazzard, and D. C. Douek. Where does HIV live? N. Engl. J. Med. 350:1872–1880 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. S. M. Crowe and S. Sonza. HIV-1 can be recovered from a variety of cells including peripheral blood monocytes of patients receiving highly active antiretroviral therapy: a further obstacle to eradication. J. Leukoc. Biol. 68:345–350 (2000).

    PubMed  CAS  Google Scholar 

  17. S. Sonza, H. P. Mutimer, R. Oelrichs, D. Jardine, K. Harvey, A. Dunne, D. F. Purcell, C. Birch, and S. M. Crowe. Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS 15:17–22 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. S. Pooyan, B. Qiu, M. M. Chan, D. Fong, P. J. Sinko, M. J. Leibowitz, and S. Stein. Conjugates bearing multiple formyl-methionyl peptides display enhanced binding to but not activation of phagocytic cells. Bioconjug. Chem. 13:216–223 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. E. R. Prossnitz and R. D. Ye. The N-formyl peptide receptor: a model for the study of chemoattractant receptor structure and function. Pharmacol. Ther. 74:73–102 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. B. Burke and C. E. Lewis. The macrophage. Oxford University Press, Oxford, New York, 2002.

    Google Scholar 

  21. B. Vernon-Roberts. The macrophage. University Press, Cambridge [Eng.], 1972.

  22. P. C. Leijh, T. L. van Zwet, M. N. ter Kuile, and R. van Furth. Effect of thioglycolate on phagocytic and microbicidal activities of peritoneal macrophages. Infect. Immun. 46:448–452 (1984).

    PubMed  CAS  Google Scholar 

  23. S. Maesaki. Drug delivery system of anti-fungal and parasitic agents. Curr. Pharm. Des. 8:433–440 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. A. Kozlowski and J. M. Harris. Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C. J. Control. Release 72:217–224 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. J. M. Harris, N. E. Martin, and M. Modi. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40:539–551 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. A. Kozlowski, S. A. Charles, and J. M. Harris. Development of pegylated interferons for the treatment of chronic hepatitis C. BioDrugs 15:419–429 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. C. D. Conover, R. B. Greenwald, A. Pendri, C. W. Gilbert, and K. L. Shum. Camptothecin delivery systems: enhanced efficacy and tumor accumulation of camptothecin following its conjugation to polyethylene glycol via a glycine linker. Cancer Chemother. Pharmacol. 42:407–414 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. R. B. Greenwald. PEG drugs: an overview. J. Control. Release 74:159–171 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. R. B. Greenwald, Y. H. Choe, J. McGuire, and C. D. Conover. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55:217–250 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. M. J. Roberts, M. D. Bentley, and J. M. Harris. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54:459–476 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. P. Caliceti and F. M. Veronese. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55:1261–1277 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. J. M. Harris. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum, New York, 1991.

    Google Scholar 

  33. M. R. Sherman, L. D. Williams, M. C. P. Saifer, J. A. French, L. W. Kwak, and J. J. Oppenheim. Conjugation of high, molecular weight poly(ethylene glycol) to cytokines: granulocyte-macrophage colony stimulating factors as model substrates. ACS, Washington, DC, 1997.

  34. P. Caliceti, O. Schiavon, and F. M. Veronese. Biopharmaceutical properties of uricase conjugated to neutral and amphiphilic polymers. Bioconjug. Chem. 10:638–646 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. I. L. Koumenis, Z. Shahrokh, S. Leong, V. Hsei, L. Deforge, and G. Zapata. Modulating pharmacokinetics of an anti-interleukin-8 F(ab′)(2) by amine-specific PEGylation with preserved bioactivity. Int. J. Pharm. 198:83–95 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. F. M. Veronese, P. Caliceti, and O. Schiavon. Branched and linear poly(ethylene glycol): Influence of the polymer structure on enzymological, pharmacokinetic, and immunological properties of protein conjugates. J. Bioact. Compat. Polym. 12:196–207 (1997).

    CAS  Google Scholar 

  37. C. Monfardini, O. Schiavon, P. Caliceti, M. Morpurgo, J. M. Harris, and F. M. Veronese. A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug. Chem. 6:62–69 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. S. Crowe, T. Zhu, and W. A. Muller. The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J. Leukoc. Biol. 74:635 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. J. Hu, H. Liu, and L. Wang. Enhanced delivery of AZT to macrophages via acetylated LDL. J. Control. Release 69:327–335 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants AI 33789 and AI 51214 from National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Sinko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, L., Pooyan, S., Hu, P. et al. Peritoneal Macrophage Uptake, Pharmacokinetics and Biodistribution of Macrophage-Targeted PEG-fMLF (N-Formyl-Methionyl-Leucyl-Phenylalanine) Nanocarriers for Improving HIV Drug Delivery. Pharm Res 24, 2110–2119 (2007). https://doi.org/10.1007/s11095-007-9402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9402-5

Key words

Navigation