Skip to main content

Advertisement

Log in

Immunocolloidal Targeting of the Endocytotic Siglec-7 Receptor Using Peripheral Attachment of Siglec-7 Antibodies to Poly(Lactide-co-Glycolide) Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to translocate into cytoplasm by siglec receptor-mediated internalisation.

Materials and Methods

Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 μg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.

Results

Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to Nile-Red-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.

Conclusions

Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. K. Vasir and V. Labhasetwar. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat. 4:363–374 (2005).

    PubMed  CAS  Google Scholar 

  2. P. A. McCarron, S. A. Olwill, W. M.Marouf, R. J.Buick, B. Walker, and C. J. Scott. Antibody conjugates and therapeutic strategies. Mol. Interv. 5:368–380 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. W. L. Monsky, D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, V. P. Torchilin, F. Yuan, and R. K. Jain. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59:4129–4135 (1999).

    PubMed  CAS  Google Scholar 

  4. R. Durand, M. Paul, D. Rivollet, R. Houin, A. Astier, and M. Deniau. Activity of pentamidine-loaded methacrylate nanoparticles against Leishmania infantum in a mouse model. Int. J. Parasitol. 27:1361–1367 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. D. C. Drummond, K. Hong, J. W. Park, C. C. Benz, and D. B. Kirpotin. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm. 60:285–332 (2001).

    Article  CAS  Google Scholar 

  6. P. D. Senter and C. J. Springer. Selective activation of anticancer prodrugs by monoclonal antibody–enzyme conjugates. Adv. Drug Deliv. Rev. 53:247–264 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Mo and L. Y. Lim. Paclitaxel-loaded PLGA nanoparticles: Potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J. Control. Release 108:244–262 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. C. Farokhzad, J. J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J. P. Richie, and R. Langer. Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U. S. A. 103:6315–6320 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. J. W. Park, K. Hong, D. B. Kirpotin, G. Colbern, R. Shalaby, J. Baselga, Y. Shao, U. B. Nielsen, J. D. Marks, D. Moore, D. Papahadjopoulos, and C. C. Benz. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8:1172–1181 (2002).

    PubMed  CAS  Google Scholar 

  10. J. Huwyler, A. Cerletti, G. Fricker, A. N. Eberle, and J. Drewe. By-passing of P-glycoprotein using immunoliposomes. J. Drug Target. 10:73–79 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. R. H. van der Jagt, C. C. Badger, F. R. Appelbaum, O. W. Press, D. C. Matthews, J. F. Eary, K. A. Krohn, and I. D. Bernstein. Localization of radiolabeled antimyeloid antibodies in a human acute leukemia xenograft tumor model. Cancer Res. 52:89–94 (1992).

    PubMed  Google Scholar 

  12. L. D. Powell and A. Varki. I-Type lectins. J. Biol. Chem. 270:14243–14246 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. S. J. Orr, N. M. Morgan, R. J. Buick, C. R. Boyd, J. Elloitt, J. F. Burrows, C. A. Jefferies, P. R. Crocker, and J. A. Johnston. SOCS3 Target siglec-7 for proteasomal degradation and blocks siglec-7-mediated responses. J. Biol. Chem. 282:3418–3422 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. P. R. Crocker. Siglecs: Sialic-acid-binding immunoglobulin-like lectins in cell–cell interactions and signalling. Curr. Opin. Struck. Biol. 12:609–615 (2002).

    Article  CAS  Google Scholar 

  15. S. J. Orr, N. M. Morgan, J. Elliott, J. F. Burrows, C. J. Scott, D. W. McVicar, and J. A. Johnston. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 10:1061–1068 (2007).

    Google Scholar 

  16. G. Nicoll, T. Avril, K. Lock, K. Furukawa, N. Bovin, and P. R. Crocker. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol. 33:1642–1648 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. M. Falco, R. Biassoni, C. Bottino, M. Vitale, S. Sivori, R. Augugliaro, L. Moretta, and A. Moretta. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J. Exp. Med. 190:793–802 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. L. Balaian, R. K. Zhong, and E. D. Ball. The inhibitory effect of anti-CD33 monoclonal antibodies on acute myeloid leukaemia (AML) cell growth correlates with Syk and/or ZAP-70 expression. Exp. Hematol. 31:363–371 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. E. Nutku, H. Aizawa, S. A. Hudson, and B. S. Bochner. Ligation of siglec-8: A selective mechanism for induction of human eosinophil apoptosis. Blood 101:5014–5020 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. C. Vitale, C. Romagnani, A. Puccetti, D. Olive, R. Costello, L. Chiossone, A. Pitto, A. Bacigalupo, L. Moretta, and M. C. Mingari. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: Engagement of CD33 induces apoptosis of leukemic cells. Proc. Natl. Acad. Sci. U. S. A. 98:5764–5769 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. E. L. Sievers, F. A. Appelbaum, R. T. Spielberger, S. J. Forman, D. Flowers, F. O. Smith, K. Shannon-Dorcy, M. S. Berger, and I. D. Bernstein. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: A phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93:3678–3684 (1999).

    PubMed  CAS  Google Scholar 

  22. M. L. Linenberger. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: Progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19:176–182 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. D. H. Nguyen, E. D. Ball, and A. Varki. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp. Hematol. 34:728–735 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Y. Mo, and L. Lim. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J. Control. Release 107:30–42 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. S. Jaracz, J. Chen, L. V. Kuznetsova, and I. Ojima. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem. 13:5043–5054 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. M. C. Garnett. Targeted drug conjugates: Principles and progress. Adv. Drug Deliv. Rev. 53:171–216 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377:159–169 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. M. Koval, K. Preiter, C. Adles, P. D. Stahl, and T. H. Steinberg. Size of IgG-opsonized particles determines macrophage response during internalization. Exp. Cell Res. 242:265–273 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. I. S. Zuhorn, R. Kalicharan, and D. Hoekstra. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J. Biol. Chem. 277:18021–18028 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. P. A. McCarron, R. F. Donnelly, and W. Marouf. Celecoxib-loaded poly(D,L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. J. Microencapsul. 23:480–498 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. C. J. Roberts, P. M. Williams, J. Davies, A. C. Dawkes, J. Sefton, J. C. Edwards, A. G. Haymes, C. Bestwick, M. C. Davies, and S. J. B. Tendler. Real-space differentiation of IgG and IgM antibodies deposited on microtiter wells by scanning force microscopy. Langmuir 1:822–826 (1995).

    Google Scholar 

  32. L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin™ for active targeting. Eur. J. Pharm. Biopharm. 58:483–490 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. J. Panyam, S. Sahoo, S. Prabha, T. Bargar, and V. Labhasetwar. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-coglycolide) nanoparticles. Int. J. Pharm. 262:1–11 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. R. G. Anderson and L. Orci. A view of acidic intracellular compartments. J. Cell Biol. 106:539–543 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. J. R. Lake, R. W. Van Dyke, and B. F. Scharschmidt. Acidic vesicles in cultured rat hepatocytes. Identification and characterization of their relationship to lysosomes and other storage vesicles. Gastroenterology 92:1251–1261 (1987).

    PubMed  CAS  Google Scholar 

  36. C. Butor, G. Griffiths, N. N. Aronson, and A. Varki Co-localization of hydrolytic enzymes with widely disparate pH optima: Implications for the regulation of lysosomal pH. J. Cell Sci. 108:2213–2219 (1995).

    PubMed  CAS  Google Scholar 

  37. J. Panyam, W. Z. Zhou, S. Prabha, S. K. Sahoo, and V. Labhasetwar. Rapid endo-lysosomal escape of poly (D,L-lactide-co-glycolide) nanoparticles: Implications for drug and gene delivery. FASEB J. 16:1217–1226 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. A. H. Schinkel and J. W. Jonker. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv. Drug Deliv. Rev. 55:3–29 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. McCarron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, C.J., Marouf, W.M., Quinn, D.J. et al. Immunocolloidal Targeting of the Endocytotic Siglec-7 Receptor Using Peripheral Attachment of Siglec-7 Antibodies to Poly(Lactide-co-Glycolide) Nanoparticles. Pharm Res 25, 135–146 (2008). https://doi.org/10.1007/s11095-007-9400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9400-7

Key words

Navigation