Skip to main content

Advertisement

Log in

Calcipotriol Affects Keratinocyte Proliferation by Decreasing Expression of Early Growth Response-1 and Polo-like Kinase-2

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Calcipotriol is a potent drug for topical treatment of psoriasis because it manages to inhibit keratinocyte proliferation. In the present study we investigated the effects of calcipotriol on gene expression in human keratinocytes in terms of mechanism of how calcipotriol decreases proliferation.

Materials and methods

Cell proliferation was analyzed by MTT assay. The differential display approach together with qPCR was used to assess the gene expression after treatment. In addition, Western immunoblotting revealed differences on the protein level. Finally, transfection of the KCs with specific small interfering RNA determined the genes necessary to inhibit proliferation.

Results

KCs proliferation was decreased in a concentration-dependent manner. Moreover, calcipotriol dowregulated the expression of two proliferation factors: early growth response-1 (EGR1) and polo-like kinase-2 (PLK2). The protein levels of EGR1 and PLK2 were also decreased. Specific siRNA against EGR1 and PLK2 in KCs resulted in marked reduction of EGR1 and PLK2 expression. In both cases, the reduction resolved in the decreased proliferation of KCs.

Conclusion

This study provides a new insight into how calcipotriol affects proliferation of keratinocytes by decreasing the expression of EGR1 and PLK2. Furthermore, the results offer groundwork for developing novel compounds for the treatment of hiperproliferative skin disorders like psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Chamian and J. G. Krueger. Psoriasis vulgaris: an interplay of T lymphocytes, dendritic cells, and inflammatory cytokines in pathogenesis. Curr. Opin. Rheumatol. 16:331–337 (2004).

    Article  PubMed  Google Scholar 

  2. R. C. McKenzie and E. Sabin. Aberrant signalling and transcription factor activation as an explanation for the defective grown control and differentiation of keratinocytes in psoriasis: a hypothesis. Exp. Dermatol. 12:337–345 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. M. C. Heng, M. K. Song, J. Harker, and M. K. Heng. Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br. J. Dermatol. 143:937–949 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. C. Johansen, K. Kragballe, M. Rasmussen, T. N. Dam, and L. Iversen. Activator protein 1 DNA binding activity is decreased in lesional psoriatic skin compared with nonlesional psoriatic skin. Br. J. Dermatol. 151:600–607 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. C. Johansen, E. Flindt, K. Kragballe, J. Henningsen, M. Westergaard, K. Kristiansen, and L. Iversen. Inverse regulation of the nuclear factor-κB binding to the p53 and interleukin-8 êB response elements in lesional psoriatic skin. J. Invest. Dermatol. 124:1284–1292 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. R. Zenz, R. Eferl, L. Kenner, L. Florin, L. Hummerich, D. Mehic, H. Scheuch, P. Angel, E. Tschachler, and E. F. Wagner. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437:369–375 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. B. Staberg, J. Roed-Petersen, and T. Menne. Efficacy of topical treatment in psoriasis with MC903, a new vitamin D analogue. Acta Derm. Venereol. 69:147–150 (1989).

    PubMed  CAS  Google Scholar 

  8. R. S. Kirsner and D. Federman. Treatment of psoriasis: role of calcipotriene. Am. Fam. Phys. 52:237–240, 243–244 (1995).

    Google Scholar 

  9. L. Binderup and E. Bramm. Effects of a novel vitamin D analogue MC903 on cell proliferation and differentiation in vitro and on calcium metabolism in vivo. Biochem. Pharmacol. 37:889–895 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. K. Kragballe and I. L. Wildfang. Calcipotriol (MC 903), a novel vitamin D3 analogue stimulates terminal differentiation and inhibits proliferation of cultured human keratinocytes. Arch. Dermatol. Res. 282:164–167 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. E. Lee, S. H. Jeon, J. Y. Yi, Y. J. Jin, and Y. S. Son. Calcipotriol inhibits autocrine phosphorylation of EGF receptor in a calcium-dependent manner, a possible mechanism for its inhibition of cell proliferation and stimulation of cell differentiation. Biochem. Biophys. Res. Commun. 284:419–425 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. P. Milde, U. Hauser, T. Simon, G. Mall, V. Ernst, M. R. Haussler, P. Frosch, and E. W. Rauterberg. Expression of 1,25-dihydroxyvitamin D3 receptors in normal and psoriatic skin. J. Invest. Dermatol. 97:230–239 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. W. E. Stumpf, M. Sar, F. A. Reid, Y. Tanaka, and H. F. DeLuca. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science 206:1189–1190 (1979).

    Article  Google Scholar 

  14. P. Liang and A. B. Pardee. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. H. Takahashi, M. Ibe, M. Kinouchi, A. Ishida-Yamamoto, Y. Hashimoto, and H. Iizuka. Similarly potent action of 1,25-dihydroxyvitamin D3 and its analogues, tacalcitol, calcipotriol, and maxacalcitol on normal human keratinocyte proliferation and differentiation. J. Dermatol. Sci. 31:21–28 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. J. Romer, E. Hasseleager, P. L. Norby, T. Steiniche, J. T. Clausen, and K. Kragballe. Epidermal overexpression of interleukine-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine A or calcipotriol. J. Invest. Dermatol. 121:1306–1311 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. K. Kaufmann and G. Thiel. Epidermal growth factor and thrombin induced proliferation of immortalized human keratinocytes is coupled to the synthesis of Egr-1, a zinc finger transcriptional regulator. J. Cell Biochem. 85:381–391 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. A. Gashler and V. P. Sukhatme. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog. Nucleic Acid Res. Mol. Biol. 50:191–224 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. L. M. Khachigian and T. Collins. Early growth response factor 1: a pleiotropic mediator of inducible gene expression. J. Mol. Med. 76:613–616 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. J. Svaren, T. Ehrig, S. A. Abdulkadir, M. U. Ehrengruber, M. A. Watson, and J. Milbrandt. EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J. Biol. Chem. 275:38524–38531 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. V. Chaturvedi, M. Cesnjaj, P. Bacon, J. Panella, D. Choubey, M. O. Diaz, and B. J. Nickoloff. Role of INK4a/Arf locus-encoded senescent checkpoints activated in normal and psoriatic keratinocytes. Am. J. Pathol. 162:161–170 (2003).

    PubMed  CAS  Google Scholar 

  22. E. S. Silverman and T. Collins. Pathways of Egr-1-mediated gene transcription in vascular biology. Am. J. Pathol. 154:665–670 (1999).

    PubMed  CAS  Google Scholar 

  23. S. Xie, B. Xie, M. Y. Lee, and W. Dai. Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24:277–286 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. D. L. Simmons, B. G. Neel, R. Stevens, G. Evett, and R. L. Erikson. Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol. Cell Biol. 12:4164–4169 (1992).

    PubMed  CAS  Google Scholar 

  25. S. Ma, J. Charron, and R. L. Erikson. Role of Plk2 (Snk) in mouse development and cell proliferation. Mol. Cell Biol. 23:6936–6943 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. T. F. Burns, P. W. Fei, K. A. Scata, D. T. Dicker, and P. W. S. El Deiry. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (Taxol)-exposed cells. Mol. Cell Biol. 23:5556–5571 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. S. Warnke, S. Kemmler, R. S. Hames, H. L. Tsai, U. Hoffmann-Rohrer, A. M. Fry, and I. Hoffmann. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol. 14:1200–1207 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. V. Baron, E. D. Adamson, A. Calogero, G. Ragona, and D. Mercola. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther. 13:115–124 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. K. Kaufmann, K. Bach, and G. Thiel. Extracellular signal-regulated protein kinases Erk1/Erk2 stimulate expression and biological activity of the transcription regulator Egr-1. Biol. Chem. 382:1077–1081 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. J. Zuber, O. I. Tchernitsa, B. Hinzmann, A. C. Schmitz, M. Grips, M. Hellriegel, C. Sers, A. Rosenthal, and R. Schafer. A genome-wide survey of RAS transformation targets. Nat. Genet. 24:144–152 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation to Professor Roger Pain for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jernej Kristl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristl, J., Slanc, P., Krašna, M. et al. Calcipotriol Affects Keratinocyte Proliferation by Decreasing Expression of Early Growth Response-1 and Polo-like Kinase-2. Pharm Res 25, 521–529 (2008). https://doi.org/10.1007/s11095-007-9388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9388-z

Key words

Navigation