Skip to main content

Advertisement

Log in

A Cheminformatic Toolkit for Mining Biomedical Knowledge

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cheminformatics can be broadly defined to encompass any activity related to the application of information technology to the study of properties, effects and uses of chemical agents. One of the most important current challenges in cheminformatics is to allow researchers to search databases of biomedical knowledge, using chemical structures as input.

Materials and Methods

An important step towards this goal was the establishment of PubChem, an open, centralized database of small molecules accessible through the World Wide Web. While PubChem is primarily intended to serve as a repository for high throughput screening data from federally-funded screening centers and academic research laboratories, the major impact of PubChem could also reside in its ability to serve as a chemical gateway to biomedical databases such as PubMed.

Conclusion

This article will review cheminformatic tools that can be applied to facilitate annotation of PubChem through links to the scientific literature; to integrate PubChem with transcriptomic, proteomic, and metabolomic datasets; to incorporate results of numerical simulations of physiological systems into PubChem annotation; and ultimately, to translate data of chemical genomics screening efforts into information that will benefit biomedical researchers and physician scientists across all therapeutic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. K. Wagner, S. J. Haggarty, and P. A. Clemons. Chemical genomics: probing protein function using small molecules. Am. J. Pharmacogenomics. 4:313–320 (2004).

    PubMed  CAS  Google Scholar 

  2. R. A. Butcher and S. L. Schreiber. Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr. Opin. Chem. Biol. 9:25–30 (2005).

    PubMed  CAS  Google Scholar 

  3. H. S. Moon, E. M. Jacobson, S. M. Khersonsky, M. R. Luzung, D. P. Walsh, W. Xiong, J. W. Lee, P. B. Parikh, J. C. Lam, T. W. Kang, G. R. Rosania, A. F. Schier, and Y. T. Chang. A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J. Am. Chem. Soc. 124:11608–11609 (2002).

    PubMed  CAS  Google Scholar 

  4. B. R. Stockwell. Exploring biology with small organic molecules. Nature 432:846–854 (2004).

    PubMed  CAS  Google Scholar 

  5. G. R. Rosania, J. Merlie, Jr., N. Gray, Y. T. Chang, P. G. Schultz, and R. Heald. A cyclin-dependent kinase inhibitor inducing cancer cell differentiation: biochemical identification using Xenopus egg extracts. Proc. Natl. Acad. Sci. U. S. A. 96:4797–4802 (1999).

    PubMed  CAS  Google Scholar 

  6. G. R. Rosania, Y. T. Chang, O. Perez, D. Sutherlin, H. Dong, D. J. Lockhart, and P. G. Schultz. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat. Biotechnol. 18:304–308 (2000).

    PubMed  CAS  Google Scholar 

  7. G. R. Rosania. Supertargeted chemistry: identifying relationships between molecular structures and their sub-cellular distribution. Curr. Top Med. Chem. 3:659–685 (2003).

    PubMed  CAS  Google Scholar 

  8. O. D. Perez, Y. T. Chang, G. Rosania, D. Sutherlin, and P. G. Schultz. Inhibition and reversal of myogenic differentiation by purine-based microtubule assembly inhibitors. Chem. Biol. 9:475–483 (2002).

    PubMed  CAS  Google Scholar 

  9. Y. T. Chang, S. M. Wignall, G. R. Rosania, N. S. Gray, S. R. Hanson, A. I. Su, J. Merlie, Jr., H. S. Moon, S. B. Sangankar, O. Perez, R. Heald, and P. G. Schultz. Synthesis and biological evaluation of myoseverin derivatives: microtubule assembly inhibitors. J. Med. Chem. 44:4497–4500 (2001).

    PubMed  CAS  Google Scholar 

  10. Y. T. Chang, N. S. Gray, G. R. Rosania, D. P. Sutherlin, S. Kwon, T. C. Norman, R. Sarohia, M. Leost, L. Meijer, and P. G. Schultz. Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem. Biol. 6:361–375 (1999).

    PubMed  CAS  Google Scholar 

  11. I. Smukste and B. R. Stockwell. Advances in chemical genetics. Annu. Rev. Genomics. Hum. Genet. 6:261–286 (2005).

    PubMed  CAS  Google Scholar 

  12. S. L. Schreiber, K. C. Nicolaou, and K. Davies. Diversity-oriented organic synthesis and proteomics. New frontiers for chemistry & biology. Chem. Biol. 9:1–2 (2002).

    PubMed  CAS  Google Scholar 

  13. Y. K. Kim, M. A. Arai, T. Arai, J. O. Lamenzo, E. F. Dean, 3rd, N. Patterson, P. A. Clemons, and S. L. Schreiber. Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space. J. Am. Chem. Soc. 126:14740–14745 (2004).

    PubMed  CAS  Google Scholar 

  14. J. Klekota, E. Brauner, F. P. Roth, and S. L. Schreiber. Using high-throughput screening data to discriminate compounds with single-target effects from those with side effects. J. Chem. Inf. Model 46:1549–1562 (2006).

    PubMed  CAS  Google Scholar 

  15. C. P. Austin. The completed human genome: implications for chemical biology. Curr. Opin. Chem. Biol. 7:511–515 (2003).

    PubMed  CAS  Google Scholar 

  16. A. Ramanathan, C. Wang, and S. L. Schreiber. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc. Natl. Acad. Sci. U. S. A. 102:5992–5997 (2005).

    PubMed  CAS  Google Scholar 

  17. K. Dettmer, P. A. Aronov, and B. D. Hammock. Mass spectrometry-based metabolomics. Mass. Spectrom. Rev. 26(1):51–78 (2007).

    PubMed  CAS  Google Scholar 

  18. K. Hollywood, D. R. Brison, and R. Goodacre. Metabolomics: current technologies and future trends. Proteomics 6:4716–4723 (2006).

    PubMed  CAS  Google Scholar 

  19. N. Schauer and A. R. Fernie. Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 11:508–516 (2006).

    PubMed  CAS  Google Scholar 

  20. O. Ebenhoh, T. Handorf, and R. Heinrich. Structural analysis of expanding metabolic networks. Genome. Inform. Ser. Workshop Genome. Inform. 15:35–45 (2004).

    Google Scholar 

  21. S. Goto, T. Nishioka, and M. Kanehisa. LIGAND: chemical database of enzyme reactions. Nucleic Acids Res. 28:380–382 (2000).

    PubMed  CAS  Google Scholar 

  22. S. Goto, Y. Okuno, M. Hattori, T. Nishioka, and M. Kanehisa. LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res. 30:402–404 (2002).

    PubMed  CAS  Google Scholar 

  23. D. C. McShan, M. Updadhayaya, and I. Shah. Symbolic inference of xenobiotic metabolism. Pac. Symp. Biocomput. 545–556 (2004).

  24. M. Reitz, A. Homeyer, and J. Gasteiger. Query generation to search for inhibitors of enzymatic reactions. J. Chem. Inf. Model 46:2333–2341 (2006).

    PubMed  CAS  Google Scholar 

  25. E. Selkov, Jr., Y. Grechkin, N. Mikhailova, and E. Selkov. MPW: the Metabolic Pathways Database. Nucleic Acids Res. 26:43–45 (1998).

    PubMed  CAS  Google Scholar 

  26. J. Liu, X. Wu, B. Mitchell, C. Kintner, S. Ding, and P. G. Schultz. A Small-Molecule Agonist of the Wnt Signaling Pathway. Angew Chem. Int. Ed. Engl. 44(13): 1987–1990 (2005).

    PubMed  CAS  Google Scholar 

  27. J. S. Melnick, J. Janes, S. Kim, J. Y. Chang, D. G. Sipes, D. Gunderson, L. Jarnes, J. T. Matzen, M. E. Garcia, T. L. Hood, R. Beigi, G. Xia, R. A. Harig, H. Asatryan, S. F. Yan, Y. Zhou, X. J. Gu, A. Saadat, V. Zhou, F. J. King, C. M. Shaw, A. I. Su, R. Downs, N. S. Gray, P. G. Schultz, M. Warmuth, and J. S. Caldwell. An efficient rapid system for profiling the cellular activities of molecular libraries. Proc. Natl. Acad. Sci. U. S. A. 103:3153–3158 (2006).

    PubMed  CAS  Google Scholar 

  28. M. Warashina, K. H. Min, T. Kuwabara, A. Huynh, F. H. Gage, P. G. Schultz, and S. Ding. A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew Chem. Int. Ed. Engl. 45:591–593 (2006).

    PubMed  CAS  Google Scholar 

  29. E. Zerhouni. Medicine. The NIH Roadmap. Science 302:63–72 (2003).

    PubMed  CAS  Google Scholar 

  30. http://grants1.nih.gov/grants/guide/rfa-files/RFA-RM-04-017.html. MLSCN.

  31. http://grants.nih.gov/grants/guide/rfa-files/RFA-RM-05-012.html. RFA ECCR.

  32. T. I. Oprea, J. Gottfries, V. Sherbukhin, P. Svensson, and T. C. Kuhler. Chemical information management in drug discovery: optimizing the computational and combinatorial chemistry interfaces. J. Mol. Graph. Model 18:512–524, 541 (2000).

    PubMed  CAS  Google Scholar 

  33. P. Japertas, R. Didziapetris, and A. Petrauskas. Fragmental methods in the analysis of biological activities of diverse compound sets. Mini. Rev. Med. Chem. 3:797–808 (2003).

    PubMed  CAS  Google Scholar 

  34. J. Bajorath. Chemoinformatics methods for systematic comparison of molecules from natural and synthetic sources and design of hybrid libraries. J. Comput. Aided. Mol. Des. 16:431–439 (2002).

    PubMed  CAS  Google Scholar 

  35. J. M. Shin and D. H. Cho. PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures. Nucleic Acids Res. 33:D238–D241 (2005).

    PubMed  CAS  Google Scholar 

  36. B. A. Tounge, L. B. Pfahler, and C. H. Reynolds. Chemical information based scaling of molecular descriptors: a universal chemical scale for library design and analysis. J. Chem. Inf. Comput. Sci. 42:879–884 (2002).

    PubMed  CAS  Google Scholar 

  37. A. Tropsha and W. Zheng. Rational principles of compound selection for combinatorial library design. Comb. Chem. High. Throughput. Screen 5:111–123 (2002).

    PubMed  CAS  Google Scholar 

  38. P. Willett. Chemoinformatics—similarity and diversity in chemical libraries. Curr. Opin. Biotechnol. 11:85–88 (2000).

    PubMed  CAS  Google Scholar 

  39. C. H. Reynolds, A. Tropsha, L. B. Pfahler, R. Druker, S. Chakravorty, G. Ethiraj, and W. Zheng. Diversity and coverage of structural sublibraries selected using the SAGE and SCA algorithms. J. Chem. Inf. Comput. Sci. 41:1470–1477 (2001).

    PubMed  CAS  Google Scholar 

  40. M. Alvarez, R. Robey, V. Sandor, K. Nishiyama, Y. Matsumoto, K. Paull, S. Bates, and T. Fojo. Using the national cancer institute anticancer drug screen to assess the effect of MRP expression on drug sensitivity profiles. Mol. Pharmacol. 54:802–814 (1998).

    PubMed  CAS  Google Scholar 

  41. S. A. Amundson, T. G. Myers, D. Scudiero, S. Kitada, J. C. Reed, and A. J. Fornace, Jr. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60:6101–6110 (2000).

    PubMed  CAS  Google Scholar 

  42. S. Tavelin, J. Taipalensuu, L. Soderberg, R. Morrison, S. Chong, and P. Artursson. Prediction of the oral absorption of low-permeability drugs using small intestine-like 2/4/A1 cell monolayers. Pharm. Res. 20:397–405 (2003).

    PubMed  CAS  Google Scholar 

  43. W. J. Egan and G. Lauri. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 54:273–289 (2002).

    PubMed  CAS  Google Scholar 

  44. R. Huang, A. Wallqvist, and D. G. Covell. Comprehensive analysis of pathway or functionally related gene expression in the National Cancer Institute’s anticancer screen. Genomics 87:315–328 (2006).

    PubMed  CAS  Google Scholar 

  45. R. Huang, A. Wallqvist, N. Thanki, and D. G. Covell. Linking pathway gene expressions to the growth inhibition response from the National Cancer Institute’s anticancer screen and drug mechanism of action. Pharmacogenomics J. 5:381–399 (2005).

    PubMed  CAS  Google Scholar 

  46. A. D. Koutsoukos, L. V. Rubinstein, D. Faraggi, R. M. Simon, S. Kalyandrug, J. N. Weinstein, K. W. Kohn, and K. D. Paull. Discrimination techniques applied to the NCI in vitro anti-tumour drug screen: predicting biochemical mechanism of action. Stat. Med. 13:719–730 (1994).

    PubMed  CAS  Google Scholar 

  47. J. N. Weinstein, T. G. Myers, P. M. O’Connor, S. H. Friend, A. J. Fornace, Jr., K. W. Kohn, T. Fojo, S. E. Bates, L. V. Rubinstein, N. L. Anderson, J. K. Buolamwini, W. W. van Osdol, A. P. Monks, D. A. Scudiero, E. A. Sausville, D. W. Zaharevitz, B. Bunow, V. N. Viswanadhan, G. S. Johnson, R. E. Wittes, and K. D. Paull. An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349 (1997).

    PubMed  CAS  Google Scholar 

  48. http://pubchem.ncbi.nlm.nih.gov. PubChem.

  49. H. Shatkay and R. Feldman. Mining the biomedical literature in the genomic era: an overview. J. Comput. Biol. 10:821–855 (2003).

    PubMed  CAS  Google Scholar 

  50. R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust, H. Rzepa, C. Steinbeck, J. Wegner, and E. L. Willighagen. The Blue Obelisk-interoperability in chemical informatics. J. Chem. Inf. Model 46:991–998 (2006).

    PubMed  CAS  Google Scholar 

  51. D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34:D668–D672 (2006).

    PubMed  CAS  Google Scholar 

  52. T. I. Oprea, I. Zamora, and A. L. Ungell. Pharmacokinetically based mapping device for chemical space navigation. J. Comb. Chem. 4:258–266 (2002).

    PubMed  CAS  Google Scholar 

  53. T. I. Oprea and J. Gottfries. Chemography: the art of navigating in chemical space. J. Comb. Chem. 3:157–166 (2001).

    PubMed  CAS  Google Scholar 

  54. N. P. Savchuk, K. V. Balakin, and S. E. Tkachenko. Exploring the chemogenomic knowledge space with annotated chemical libraries. Curr. Opin. Chem. Biol. 8:412–417 (2004).

    PubMed  CAS  Google Scholar 

  55. R. D. Cramer, R. J. Jilek, and K. M. Andrews. Dbtop: topomer similarity searching of conventional structure databases. J. Mol. Graph. Model 20:447–462 (2002).

    PubMed  CAS  Google Scholar 

  56. C. Merlot, D. Domine, and D. J. Church. Fragment analysis in small molecule discovery. Curr. Opin. Drug Discov. Devel. 5:391–399 (2002).

    PubMed  CAS  Google Scholar 

  57. O. Keskin, I. Bahar, R. L. Jernigan, J. A. Beutler, R. H. Shoemaker, E. A. Sausville, and D. G. Covell. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure. Anticancer Drug Des. 15:79–98 (2000).

    PubMed  CAS  Google Scholar 

  58. W. G. Rice, J. A. Turpin, C. A. Schaeffer, L. Graham, D. Clanton, R. W. Buckheit, Jr., D. Zaharevitz, M. F. Summers, A. Wallqvist, and D. G. Covell. Evaluation of selected chemotypes in coupled cellular and molecular target-based screens identifies novel HIV-1 zinc finger inhibitors. J. Med. Chem. 39:3606–3616 (1996).

    PubMed  CAS  Google Scholar 

  59. A. Wallqvist, R. Huang, N. Thanki, and D. G. Covell. Evaluating chemical structure similarity as an indicator of cellular growth inhibition. J. Chem. Inf. Model 46:430–437 (2006).

    PubMed  CAS  Google Scholar 

  60. G. Cianchetta, Y. Li, J. Kang, D. Rampe, A. Fravolini, G. Cruciani, and R. J. Vaz. Predictive models for hERG potassium channel blockers. Bioorg. Med. Chem. Lett. 15:3637–3642 (2005).

    PubMed  CAS  Google Scholar 

  61. G. Cianchetta, R. W. Singleton, M. Zhang, M. Wildgoose, D. Giesing, A. Fravolini, G. Cruciani, and R. J. Vaz. A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR. J. Med. Chem. 48:2927–2935 (2005).

    PubMed  CAS  Google Scholar 

  62. P. de Cerqueira Lima, A. Golbraikh, S. Oloff, Y. Xiao, and A. Tropsha. Combinatorial QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model 46:1245–1254 (2006).

    PubMed  Google Scholar 

  63. C. Hansch, A. Leo, and D. H. Hoekman. Exploring QSAR, American Chemical Society, Washington, DC, 1995.

  64. T. J. Hou, W. Zhang, K. Xia, X. B. Qiao, and X. J. Xu. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. J. Chem. Inf. Comput. Sci. 44:1585–1600 (2004).

    PubMed  CAS  Google Scholar 

  65. S. Oloff, R. B. Mailman, and A. Tropsha. Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J. Med. Chem. 48:7322–7332 (2005).

    PubMed  CAS  Google Scholar 

  66. C. M. Breneman, C. M. Sundling, N. Sukumar, L. Shen, W. P. Katt, and M. J. Embrechts. New developments in PEST shape/property hybrid descriptors. J. Comput. Aided Mol. Des. 17:231–240 (2003).

    PubMed  CAS  Google Scholar 

  67. J. R. Votano, M. Parham, L. M. Hall, L. H. Hall, L. B. Kier, S. Oloff, and A. Tropsha. QSAR Modeling of Human Serum Protein Binding with Several Modeling Techniques Utilizing Structure-Information Representation. J. Med. Chem. 49:7169–7181 (2006).

    PubMed  CAS  Google Scholar 

  68. A. Golbraikh, M. Shen, Z. Xiao, Y. D. Xiao, K. H. Lee, and A. Tropsha. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des. 17:241–253 (2003).

    PubMed  CAS  Google Scholar 

  69. S. Oloff, S. Zhang, N. Sukumar, C. Breneman, and A. Tropsha. Chemometric analysis of ligand receptor complementarity: identifying Complementary Ligands Based on Receptor Information (CoLiBRI). J. Chem. Inf. Model. 46:844–851 (2006).

    PubMed  CAS  Google Scholar 

  70. R. Guha, J. R. Serra, and P. C. Jurs. Generation of QSAR sets with a self-organizing map. J. Mol. Graph. Model 23:1–14 (2004).

    PubMed  CAS  Google Scholar 

  71. R. Guha and P. C. Jurs. Interpreting computational neural network QSAR models: a measure of descriptor importance. J. Chem. Inf. Model 45:800–806 (2005).

    PubMed  CAS  Google Scholar 

  72. R. Guha and P. C. Jurs. Determining the validity of a QSAR model—a classification approach. J. Chem. Inf. Model 45:65–73 (2005).

    PubMed  CAS  Google Scholar 

  73. A. Kurup. C-QSAR: a database of 18,000 QSARs and associated biological and physical data. J. Comput. Aided Mol. Des. 17:187–196 (2003).

    PubMed  CAS  Google Scholar 

  74. U. Scherf, D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee, L. Tanabe, K. W. Kohn, W. C. Reinhold, T. G. Myers, D. T. Andrews, D. A. Scudiero, M. B. Eisen, E. A. Sausville, Y. Pommier, D. Botstein, P. O. Brown, and J. N. Weinstein. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24:236–244 (2000).

    PubMed  CAS  Google Scholar 

  75. K. Shedden and G. R. Rosania. Exploratory chemoinformatic analysis of cell type-selective anticancer drug targeting. Mol. Pharm. 1:267–280 (2004).

    PubMed  CAS  Google Scholar 

  76. J. E. Staunton, D. K. Slonim, H. A. Coller, P. Tamayo, M. J. Angelo, J. Park, U. Scherf, J. K. Lee, W. O. Reinhold, J. N. Weinstein, J. P. Mesirov, E. S. Lander, and T. R. Golub. Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. U. S. A. 98:10787–92 (2001).

    PubMed  CAS  Google Scholar 

  77. A. Wallqvist, A. A. Rabow, R. H. Shoemaker, E. A. Sausville, and D. G. Covell. Establishing connections between microarray expression data and chemotherapeutic cancer pharmacology. Mol. Cancer Ther. 1:311–320 (2002).

    PubMed  CAS  Google Scholar 

  78. A. Wallqvist, A. A. Rabow, R. H. Shoemaker, E. A. Sausville, and D. G. Covell. Linking the growth inhibition response from the National Cancer Institute’s anticancer screen to gene expression levels and other molecular target data. Bioinformatics 19:2212–2224 (2003).

    PubMed  CAS  Google Scholar 

  79. D. G. Covell, A. Wallqvist, R. Huang, N. Thanki, A. A. Rabow, and X. J. Lu. Linking tumor cell cytotoxicity to mechanism of drug action: an integrated analysis of gene expression, small-molecule screening and structural databases. Proteins 59:403–433 (2005).

    PubMed  CAS  Google Scholar 

  80. M. Monga and E. A. Sausville. Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia 16:520–526 (2002).

    PubMed  CAS  Google Scholar 

  81. K. Shedden, J. Brumer, Y. T. Chang, and G. R. Rosania. Chemoinformatic analysis of a supertargeted combinatorial library of styryl molecules. J. Chem. Inf. Comput. Sci. 43:2068–2080 (2003).

    PubMed  CAS  Google Scholar 

  82. P. J. Artymiuk, P. A. Bath, H. M. Grindley, C. A. Pepperrell, A. R. Poirrette, D. W. Rice, D. A. Thorner, D. J. Wild, P. Willett, F. H. Allen, et al. Similarity searching in databases of three-dimensional molecules and macromolecules. J. Chem. Inf. Comput. Sci. 32:617–630 (1992).

    PubMed  CAS  Google Scholar 

  83. M. Bradley, W. Richardson, and G. M. Crippen. Deducing molecular similarity using Voronoi binding sites. J. Chem. Inf. Comput. Sci. 33:750–755 (1993).

    PubMed  CAS  Google Scholar 

  84. R. Bruschweiler. Efficient RMSD measures for the comparison of two molecular ensembles. Root-mean-square deviation. Proteins 50:26–34 (2003).

    PubMed  CAS  Google Scholar 

  85. G. Cruciani, M. Pastor, and R. Mannhold. Suitability of molecular descriptors for database mining. A comparative analysis. J. Med. Chem. 45:2685–2694 (2002).

    PubMed  CAS  Google Scholar 

  86. G. M. Maggiora and V. Shanmugasundaram. Molecular similarity measures. Methods Mol. Biol. 275:1–50 (2004).

    Article  PubMed  CAS  Google Scholar 

  87. P. Willett. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11:1046–1053 (2006).

    PubMed  CAS  Google Scholar 

  88. P. Willett. Searching techniques for databases of two- and three-dimensional chemical structures. J. Med. Chem. 48:4183–4199 (2005).

    PubMed  CAS  Google Scholar 

  89. P. Willett. Similarity-based approaches to virtual screening. Biochem. Soc. Trans. 31:603–606 (2003).

    PubMed  CAS  Google Scholar 

  90. A. Schuffenhauer, V. J. Gillet, and P. Willett. Similarity searching in files of three-dimensional chemical structures: analysis of the BIOSTER database using two-dimensional fingerprints and molecular field descriptors. J. Chem. Inf. Comput. Sci. 40:295–307 (2000).

    PubMed  CAS  Google Scholar 

  91. N. J. Richmond, P. Willett, and R. D. Clark. Alignment of three-dimensional molecules using an image recognition algorithm. J. Mol. Graph. Model 23:199–209 (2004).

    PubMed  CAS  Google Scholar 

  92. N. J. Richmond, C. A. Abrams, P. R. Wolohan, E. Abrahamian, P. Willett, and R. D. Clark. GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J. Comput. Aided Mol. Des. 20:567–587 (2006).

    PubMed  CAS  Google Scholar 

  93. J. W. Raymond, C. J. Blankley, and P. Willett. Comparison of chemical clustering methods using graph- and fingerprint-based similarity measures. J. Mol. Graph. Model 21:421–433 (2003).

    PubMed  CAS  Google Scholar 

  94. N. E. Jewell, D. B. Turner, P. Willett, and G. J. Sexton. Automatic generation of alignments for 3D QSAR analyses. J. Mol. Graph. Model 20:111–121 (2001).

    PubMed  CAS  Google Scholar 

  95. S. J. Edgar, J. D. Holliday, and P. Willett. Effectiveness of retrieval in similarity searches of chemical databases: a review of performance measures. J. Mol. Graph. Model 18:343–357 (2000).

    PubMed  CAS  Google Scholar 

  96. W. Deng, C. Breneman, and M. J. Embrechts. Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods. J. Chem. Inf. Comput. Sci. 44:699–703 (2004).

    PubMed  CAS  Google Scholar 

  97. A. K. Ghose and G. M. Crippen. Modeling the benzodiazepine receptor binding site by the general three-dimensional structure-directed quantitative structure-activity relationship method REMOTEDISC. Mol. Pharmacol. 37:725–734 (1990).

    PubMed  CAS  Google Scholar 

  98. L. Boulu and G. M. Crippen. Voronoi receptor site models. Prog. Clin. Biol. Res. 289:267–277 (1989).

    PubMed  CAS  Google Scholar 

  99. A. S. Smellie, G. M. Crippen, and W. G. Richards. Fast drug-receptor mapping by site-directed distances: a novel method of predicting new pharmacological leads. J. Chem. Inf. Comput. Sci. 31:386–392 (1991).

    PubMed  CAS  Google Scholar 

  100. C. A. Parks, G. M. Crippen, and J. G. Topliss. The measurement of molecular diversity by receptor site interaction simulation. J. Comput. Aided Mol. Des. 12:441–449 (1998).

    PubMed  CAS  Google Scholar 

  101. L. Hodes, K. Paull, A. Koutsoukos, and L. Rubinstein. Exploratory data analytic techniques to evaluate anticancer agents screened in a cell culture panel. J. Biopharm. Stat. 2:31–48 (1992).

    PubMed  CAS  Google Scholar 

  102. Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M. Patel. SAGA: a subgraph matching tool for biological graphs. Bioinformatics 23(2):232–239 (2007).

    PubMed  CAS  Google Scholar 

  103. M. Kawakami, K. Koya, T. Ukai, N. Tatsuta, A. Ikegawa, K. Ogawa, T. Shishido, and L. B. Chen. Synthesis and evaluation of novel rhodacyanine dyes that exhibit antitumor activity. J. Med. Chem. 40:3151–3160 (1997).

    PubMed  CAS  Google Scholar 

  104. Y. Huang, P. Anderle, K. J. Bussey, C. Barbacioru, U. Shankavaram, Z. Dai, W. C. Reinhold, A. Papp, J. N. Weinstein, and W. Sadee. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res. 64:4294–4301 (2004).

    PubMed  CAS  Google Scholar 

  105. T. J. Mitchison. Small-molecule screening and profiling by using automated microscopy. Chembiochem 6:33–39 (2005).

    PubMed  CAS  Google Scholar 

  106. Z. E. Perlman, M. D. Slack, Y. Feng, T. J. Mitchison, L. F. Wu, and S. J. Altschuler. Multidimensional drug profiling by automated microscopy. Science 306:1194–1198 (2004).

    PubMed  CAS  Google Scholar 

  107. J. N. Weinstein. Integromic Analysis of the NCI-60 Cancer Cell Lines. Breast Dis. 19:11–22 (2004).

    PubMed  CAS  Google Scholar 

  108. T. Yamori. Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics. Cancer Chemother. Pharmacol. 52(Suppl 1):S74–S79 (2003).

    PubMed  CAS  Google Scholar 

  109. S. Ekins, Y. Nikolsky, A. Bugrim, E. Kirillov, and T. Nikolskaya. Pathway mapping tools for analysis of high content data. Methods Mol. Biol. 356:319–350 (2007).

    PubMed  CAS  Google Scholar 

  110. A. Rzhetsky, T. Koike, S. Kalachikov, S. M. Gomez, M. Krauthammer, S. H. Kaplan, P. Kra, J. J. Russo, and C. Friedman. A knowledge model for analysis and simulation of regulatory networks. Bioinformatics 16:1120–1128 (2000).

    PubMed  CAS  Google Scholar 

  111. A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. Symp. Biocomput. 422–433 (2001).

  112. S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac. Symp. Biocomput. 175–186 (2002).

  113. S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Combining microarrays and biological knowledge for estimating gene networks via bayesian networks. J. Bioinform. Comput. Biol. 2:77–98 (2004).

    PubMed  CAS  Google Scholar 

  114. K. Sachs, D. Gifford, T. Jaakkola, P. Sorger, and D. A. Lauffenburger. Bayesian network approach to cell signaling pathway modeling. Sci. STKE 2002:PE38 (2002).

    PubMed  Google Scholar 

  115. P. J. Woolf, W. Prudhomme, L. Daheron, G. Q. Daley, and D. A. Lauffenburger. Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 21(6):741–753 (2005).

    PubMed  CAS  Google Scholar 

  116. Y. Xia, H. Yu, R. Jansen, M. Seringhaus, S. Baxter, D. Greenbaum, H. Zhao, and M. Gerstein. Analyzing cellular biochemistry in terms of molecular networks. Annu. Rev. Biochem. 73:1051–1087 (2004).

    PubMed  Google Scholar 

  117. X. Zhang, K. Shedden, and G. R. Rosania. A cell-based molecular transport simulator for pharmacokinetic prediction and cheminformatic exploration. Mol. Pharm. 3:704–716 (2006).

    PubMed  CAS  Google Scholar 

  118. V. Tantishaiyakul. Prediction of Caco-2 cell permeability using partial least squares multivariate analysis. Pharmazie 56:407–411 (2001).

    PubMed  CAS  Google Scholar 

  119. H. H. Refsgaard, B. F. Jensen, P. B. Brockhoff, S. B. Padkjaer, M. Guldbrandt, and M. S. Christensen. In silico prediction of membrane permeability from calculated molecular parameters. J. Med. Chem. 48:805–811 (2005).

    PubMed  CAS  Google Scholar 

  120. J. T. Penniston, L. Beckett, D. L. Bentley, and C. Hansch. Passive permeation of organic compounds through biological tissue: a non-steady-state theory. Mol. Pharmacol. 5:333–341 (1969).

    PubMed  CAS  Google Scholar 

  121. K. Palm, K. Luthman, J. Ros, J. Grasjo, and P. Artursson. Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J. Pharmacol. Exp. Ther. 291:435–443 (1999).

    PubMed  CAS  Google Scholar 

  122. D. A. Norris, G. D. Leesman, P. J. Sinko, and G. M. Grass. Development of predictive pharmacokinetic simulation models for drug discovery. J. Control. Release 65:55–62 (2000).

    PubMed  CAS  Google Scholar 

  123. Y. Marrero Ponce, M. A. Cabrera Perez, V. Romero Zaldivar, H. Gonzalez Diaz, and F. Torrens. A new topological descriptors based model for predicting intestinal epithelial transport of drugs in Caco-2 cell culture. J. Pharm. Pharm. Sci. 7:186–199 (2004).

    PubMed  Google Scholar 

  124. S. Fujiwara, F. Yamashita, and M. Hashida. Prediction of Caco-2 cell permeability using a combination of MO-calculation and neural network. Int. J. Pharm. 237:95–105 (2002).

    PubMed  CAS  Google Scholar 

  125. G. Camenisch, J. Alsenz, H. van de Waterbeemd, and G. Folkers. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur. J. Pharm. Sci. 6:317–324 (1998).

    PubMed  CAS  Google Scholar 

  126. S. Trapp and R. W. Horobin. A predictive model for the selective accumulation of chemicals in tumor cells. European Biophysics Journal With Biophysics Letters 34:959–966 (2005).

    PubMed  CAS  Google Scholar 

  127. S. Trapp. Plant uptake and transport models for neutral and ionic chemicals. Environ. Sci. Pollut. Res. 11:33–39 (2004).

    CAS  Google Scholar 

  128. M. E. Andersen. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol. Lett. 138:9–27 (2003).

    PubMed  CAS  Google Scholar 

  129. G. R. Rosania. Mitochondria give cells a tan. Chem. Biol. 12:412–413 (2005).

    PubMed  CAS  Google Scholar 

  130. D. Williams, D. W. Jung, S. M. Khersonsky, N. Heidary, Y. T. Chang, and S. J. Orlow. Identification of compounds that bind mitochondrial F1F0 ATPase by screening a triazine library for correction of albinism. Chem. Biol. 11:1251–1259 (2004).

    PubMed  CAS  Google Scholar 

  131. D. W. Jung, D. Williams, S. M. Khersonsky, T. W. Kang, N. Heidary, Y. T. Chang, and S. J. Orlow. Identification of the F1F0 mitochondrial ATPase as a target for modulating skin pigmentation by screening a tagged triazine library in zebrafish. Mol. Biosyst. 1:85–92 (2005).

    PubMed  CAS  Google Scholar 

  132. J. R. Snyder, A. Hall, L. Ni-Komatsu, S. M. Khersonsky, Y. T. Chang, and S. J. Orlow. Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem. Biol. 12:477–484 (2005).

    PubMed  CAS  Google Scholar 

  133. V. R. Fantin and P. Leder. F16, a mitochondriotoxic compound, triggers apoptosis or necrosis depending on the genetic background of the target carcinoma cell. Cancer Res. 64:329–336 (2004).

    PubMed  CAS  Google Scholar 

  134. V. R. Fantin, M. J. Berardi, L. Scorrano, S. J. Korsmeyer, and P. Leder. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2:29–42 (2002).

    PubMed  CAS  Google Scholar 

  135. J. S. Modica-Napolitano and J. R. Aprille. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv. Drug Deliv. Rev. 49:63–70 (2001).

    PubMed  CAS  Google Scholar 

  136. A. Manetta, G. Gamboa, A. Nasseri, Y. D. Podnos, D. Emma, G. Dorion, L. Rawlings, P. M. Carpenter, A. Bustamante, J. Patel, and D. Rideout. Novel phosphonium salts display in vitro and in vivo cytotoxic activity against human ovarian cancer cell lines. Gynecol. Oncol. 60:203–212 (1996).

    PubMed  CAS  Google Scholar 

  137. T. J. Lampidis, S. D. Bernal, I. C. Summerhayes, and L. B. Chen. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 43:716–720 (1983).

    PubMed  CAS  Google Scholar 

  138. P. Costantini, E. Jacotot, D. Decaudin, and G. Kroemer. Mitochondrion as a novel target of anticancer chemotherapy. J. Natl. Cancer Inst. 92:1042–1053 (2000).

    PubMed  CAS  Google Scholar 

  139. Q. Li, Y. Kim, J. Namm, A. Kulkarni, G. R. Rosania, Y. H. Ahn, and Y. T. Chang. RNA-selective, live cell imaging probes for studying nuclear structure and function. Chem. Biol. 13:615–623 (2006).

    PubMed  CAS  Google Scholar 

  140. F. Rashid, R. W. Horobin, and M. A. Williams. Predicting the behaviour and selectivity of fluorescent probes for lysosomes and related structures by means of structure-activity models. Histochem. J. 23:450–459 (1991).

    PubMed  CAS  Google Scholar 

  141. F. Rashid and R. W. Horobin. Accumulation of fluorescent non-cationic probes in mitochondria of cultured cells: observations, a proposed mechanism, and some implications. J. Microsc. 163(Pt 2):233–241 (1991).

    PubMed  CAS  Google Scholar 

  142. F. Rashid and R. W. Horobin. Interaction of molecular probes with living cells and tissues. Part 2. A structure-activity analysis of mitochondrial staining by cationic probes, and a discussion of the synergistic nature of image-based and biochemical approaches. Histochemistry 94:303–308 (1990).

    PubMed  CAS  Google Scholar 

  143. R. W. Horobinand F. Rashid. Interactions of molecular probes with living cells and tissues. Part 1. Some general mechanistic proposals, making use of a simplistic Chinese box model. Histochemistry 94:205–209 (1990).

    PubMed  CAS  Google Scholar 

  144. R. W. Horobin. Structure-staining relationships in histochemistry and biological staining. I. Theoretical background and a general account of correlation of histochemical staining with the chemical structure of the reagents used. J. Microsc. 119:345–355 (1980).

    PubMed  CAS  Google Scholar 

  145. J. Colston, R. W. Horobin, F. Rashid-Doubell, J. Pediani, and K. K. Johal. Why fluorescent probes for endoplasmic reticulum are selective: an experimental and QSAR-modelling study. Biotech. Histochem. 78:323–332 (2003).

    PubMed  CAS  Google Scholar 

  146. E. Walter, S. Janich, B. J. Roessler, J. M. Hilfinger, and G. L. Amidon. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J. Pharm. Sci. 85:1070–1076 (1996).

    PubMed  CAS  Google Scholar 

  147. M. V. Varma, K. Sateesh, and R. Panchagnula. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol. Pharm. 2:12–21 (2005).

    PubMed  CAS  Google Scholar 

  148. M. Sugawara, Y. Takekuma, H. Yamada, M. Kobayashi, K. Iseki, and K. Miyazaki. A general approach for the prediction of the intestinal absorption of drugs: regression analysis using the physicochemical properties and drug-membrane electrostatic interaction. J. Pharm. Sci. 87:960–966 (1998).

    PubMed  CAS  Google Scholar 

  149. A. Malkia, L. Murtomaki, A. Urtti, and K. Kontturi. Drug permeation in biomembranes: in vitro and in silico prediction and influence of physicochemical properties. Eur. J. Pharm. Sci. 23:13–47 (2004).

    PubMed  CAS  Google Scholar 

  150. M. Duvvuri, W. Feng, A. Mathis, and J. P. Krise. A cell fractionation approach for the quantitative analysis of subcellular drug disposition. Pharm. Res. 21:26–32 (2004).

    PubMed  CAS  Google Scholar 

  151. Y. Gong, M. Duvvuri, and J. P. Krise. Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J. Biol. Chem. 278:50234–50239 (2003).

    PubMed  CAS  Google Scholar 

  152. Y. Lai, C. M. Tse, and J. D. Unadkat. Mitochondrial expression of the human equilibrative nucleoside transporter 1 (hENT1) results in enhanced mitochondrial toxicity of antiviral drugs. J. Biol. Chem. 279:4490–4497 (2004).

    PubMed  CAS  Google Scholar 

  153. R. Lill and G. Kispal. Mitochondrial ABC transporters. Res. Microbiol. 152:331–340 (2001).

    PubMed  CAS  Google Scholar 

  154. L. M. Mangravite, I. Badagnani, and K. M. Giacomini. Nucleoside transporters in the disposition and targeting of nucleoside analogs in the kidney. Eur. J. Pharmacol. 479:269–281 (2003).

    PubMed  CAS  Google Scholar 

  155. G. Szakacs, J. P. Annereau, S. Lababidi, U. Shankavaram, A. Arciello, K. J. Bussey, W. Reinhold, Y. Guo, G. D. Kruh, M. Reimers, J. N. Weinstein, and M. M. Gottesman. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6:129–137 (2004).

    PubMed  CAS  Google Scholar 

  156. V. Y. Chen and G. R. Rosania. The great multidrug-resistance paradox. ACS Chem. Biol. 1:271–273 (2006).

    PubMed  CAS  Google Scholar 

  157. V. Y. Chen, M. M. Posada, L. L. Blazer, T. Zhao, and G. R. Rosania. The role of the VPS4A-exosome pathway in the intrinsic egress route of a DNA-binding anticancer drug. Pharm. Res. 23:1687–1695 (2006).

    PubMed  CAS  Google Scholar 

  158. Q. Li, Y. K. Kim, J. Namm, A. Kulkarni, G. Rosania, Y. H. Ahn, and Y. T. Chang. RNA-selective, live cell imaging probes for studying nuclear structure and function. Chem. Biol. in press. (2006).

  159. V. Y. Chen, S. M. Khersonsky, K. Shedden, Y. T. Chang, and G. R. Rosania. System dynamics of subcellular transport. Mol. Pharm. 1:414–425 (2004).

    PubMed  CAS  Google Scholar 

  160. A. R. Aronson. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc. AMIA Symp. 17–21 (2001).

  161. H. Hermjakob, L. Montecchi-Palazzi, C. Lewington, S. Mudali, S. Kerrien, S. Orchard, M. Vingron, B. Roechert, P. Roepstorff, A. Valencia, H. Margalit, J. Armstrong, A. Bairoch, G. Cesareni, D. Sherman, and R. Apweiler. IntAct: an open source molecular interaction database. Nucleic Acids Res. 32:D452–D455 (2004).

    PubMed  CAS  Google Scholar 

  162. P. Ibison, M. Jacquot, F. Kam, A. G. Neville, R. W. Simpson, C. Tonnelier, T. Venczel, and A. P. Johnson. Chemical Literature Data Extraction: The CLiDE Project. J. Chem. Inf. Comput. Sci. 33:338–344 (1993).

    CAS  Google Scholar 

  163. R. N. Kostoff and R. A. DeMarco. Extracting information from the literature by text mining. Anal. Chem. 73:370A–378A (2001).

    PubMed  CAS  Google Scholar 

  164. M. Krauthammer, P. Kra, I. Iossifov, S. M. Gomez, G. Hripcsak, V. Hatzivassiloglou, C. Friedman, and A. Rzhetsky. Of truth and pathways: chasing bits of information through myriads of articles. Bioinformatics 18(Suppl 1):S249–S257 (2002).

    PubMed  Google Scholar 

  165. S. Raychaudhuri, J. T. Chang, P. D. Sutphin, and R. B. Altman. Associating genes with gene ontology codes using a maximum entropy analysis of biomedical literature. Genome. Res. 12:203–214 (2002).

    PubMed  CAS  Google Scholar 

  166. T. C. Rindflesch, L. Hunter, and A. R. Aronson. Mining molecular binding terminology from biomedical text. Proc. AMIA Symp. 127–131 (1999).

  167. T. C. Rindflesch, L. Tanabe, J. N. Weinstein, and L. Hunter. EDGAR: extraction of drugs, genes and relations from the biomedical literature. Pac. Symp. Biocomput. 517–528 (2000).

  168. M. Weeber, H. Klein, A. R. Aronson, J. G. Mork, L. T. de Jong-van den Berg, and R. Vos. Text-based discovery in biomedicine: the architecture of the DAD-system. Proc. AMIA Symp. 903–907 (2000).

  169. K. Baclawski, J. Cigna, M. M. Kokar, P. Mager, and B. Indurkhya. Knowledge representation and indexing using the unified medical language system. Pac. Symp. Biocomput. 493–504 (2000).

  170. C. Santos, D. Eggle, and D. J. States. Wnt pathway curation using automated natural language processing: combining statistical methods with partial and full parse for knowledge extraction. Bioinformatics 21(8):1653–1658 (2005).

    PubMed  CAS  Google Scholar 

  171. M. D. Yandell and W. H. Majoros. Genomics and natural language processing. Nat. Rev. Genet. 3:601–610 (2002).

    Article  PubMed  CAS  Google Scholar 

  172. M. Hattori, Y. Okuno, S. Goto, and M. Kanehisa. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125:11853–11865 (2003).

    PubMed  CAS  Google Scholar 

  173. W. D. Ihlenfeldt and J. Gasteiger. Beyond the hyperactive molecule: search, salvage and visualization of chemical information from the Internet. Pac. Symp. Biocomput. 384–395 (1996).

  174. W. D. Ihlenfeldt and J. Gasteiger. Augmenting connectivity information by compound name parsing: automatic assignment of stereochemistry and isotope labeling. J. Chem. Inf. Comput. Sci. 35:663–674 (1995).

    CAS  Google Scholar 

  175. M. Reitz, O. Sacher, A. Tarkhov, D. Trumbach, and J. Gasteiger. Enabling the exploration of biochemical pathways. Org. Biomol. Chem. 2:3226–3237 (2004).

    PubMed  CAS  Google Scholar 

  176. M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The KEGG databases at GenomeNet. Nucleic Acids Res. 30:42–46 (2002).

    PubMed  CAS  Google Scholar 

  177. M. Kanehisa and S. Goto. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30 (2000).

    PubMed  CAS  Google Scholar 

  178. J. R. McDaniel and J. R. Balmuth. Kekule: OCR—Optical chemical (structure) recognition. J. Chem. Inf. Comput. Sci. 32:373–378 (1992).

    CAS  Google Scholar 

  179. M. L. Contreras, C. Allendes, L. T. Alvarez, and R. Rozas. Computational perception and recognition of digitized molecular structures. J. Chem. Inf. Comput. Sci. 30:302–307 (1990).

    CAS  Google Scholar 

  180. R. Casey, S. Boyer, P. Healey, A. Miller, B. Oudot, and K. Zilles. Optical recognition of chemical graphics. Proceedings of the 2nd International Conference on Document Analysis and Recognition 627–631 (1993).

  181. K. Shedden, L. B. Townsend, J. C. Drach, and G. R. Rosania. A rational approach to personalized anticancer therapy: chemoinformatic analysis reveals mechanistic gene-drug associations. Pharm. Res. 20:843–847 (2003).

    PubMed  CAS  Google Scholar 

  182. G. V. Gkoutos, P. R. Kenway, and H. S. Rzepa. JChemTidy: a tool for converting chemical Web document collections to an XHTML representation. J. Chem. Inf. Comput. Sci. 41:253–258 (2001).

    PubMed  CAS  Google Scholar 

  183. P. Srinivasan. MeSHmap: a text mining tool for MEDLINE. Proc. AMIA Symp. 642–646 (2001).

  184. P. Srinivasan and T. Rindflesch. Exploring text mining from MEDLINE. Proc. AMIA Symp. 722–726 (2002).

  185. R. D. Smith, L. Hu, J. A. Falkner, M. L. Benson, J. P. Nerothin, and H. A. Carlson. Exploring protein-ligand recognition with Binding MOAD. J. Mol. Graph. Model 24:414–425 (2006).

    PubMed  CAS  Google Scholar 

  186. R. Wang, X. Fang, Y. Lu, and S. Wang. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem. 47:2977–2980 (2004).

    PubMed  CAS  Google Scholar 

  187. R. Wang, Y. Lu, X. Fang, and S. Wang. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J. Chem. Inf. Comput. Sci. 44:2114–2125 (2004).

    PubMed  CAS  Google Scholar 

  188. Y. Z. Chen and C. Y. Ung. Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach. J. Mol. Graph. Model 20:199–218 (2001).

    PubMed  CAS  Google Scholar 

  189. Y. Z. Chen and D. G. Zhi. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217–226 (2001).

    PubMed  CAS  Google Scholar 

  190. A. Lindstrom, F. Pettersson, F. Almqvist, A. Berglund, J. Kihlberg, and A. Linusson. Hierarchical PLS modeling for predicting the binding of a comprehensive set of structurally diverse protein-ligand complexes. J. Chem. Inf. Model 46:1154–1167 (2006).

    PubMed  Google Scholar 

  191. N. Paul, E. Kellenberger, G. Bret, P. Muller, and D. Rognan. Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins 54:671–680 (2004).

    PubMed  CAS  Google Scholar 

  192. C. P. Mpamhanga, B. Chen, I. M. McLay, and P. Willett. Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions. J. Chem. Inf. Model 46:686–698 (2006).

    PubMed  CAS  Google Scholar 

  193. H. Berman, K. Henrick, H. Nakamura, and J. L. Markley. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 35(Database issue):D301–303 (2007).

    Google Scholar 

  194. E. Kellenberger, P. Muller, C. Schalon, G. Bret, N. Foata, and D. Rognan. sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank. J. Chem. Inf. Model 46:717–727 (2006).

    PubMed  CAS  Google Scholar 

  195. W. C. Byrem, S. C. Armstead, S. Kobayashi, R. G. Eckenhoff, and D. M. Eckmann. A guest molecule-host cavity fitting algorithm to mine PDB for small molecule targets. Biochim. Biophys. Acta 1764:1320–1324 (2006).

    PubMed  CAS  Google Scholar 

  196. Z. E. Perlman, T. J. Mitchison, and T. U. Mayer. High-content screening and profiling of drug activity in an automated centrosome-duplication assay. Chembiochem. 6:145–151 (2005).

    PubMed  CAS  Google Scholar 

  197. J. C. Yarrow, Z. E. Perlman, N. J. Westwood, and T. J. Mitchison. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 4:21 (2004).

    PubMed  Google Scholar 

  198. J. C. Yarrow, Y. Feng, Z. E. Perlman, T. Kirchhausen, and T. J. Mitchison. Phenotypic screening of small molecule libraries by high throughput cell imaging. Comb. Chem. High Throughput Screen 6:279–286 (2003).

    PubMed  CAS  Google Scholar 

  199. J. C. Yarrow, G. Totsukawa, G. T. Charras, and T. J. Mitchison. Screening for cell migration inhibitors via automated microscopy reveals a Rho-kinase inhibitor. Chem. Biol. 12:385–395 (2005).

    PubMed  CAS  Google Scholar 

  200. V. C. Abraham, D. L. Taylor, and J. R. Haskins. High content screening applied to large-scale cell biology. Trends Biotechnol. 22:15–22 (2004).

    PubMed  CAS  Google Scholar 

  201. D. L. Taylor. Past, present, and future of high content screening and the field of cellomics. Methods Mol. Biol. 356:3–18 (2007).

    PubMed  CAS  Google Scholar 

  202. A. H. Gough and P. A. Johnston. Requirements, features, and performance of high content screening platforms. Methods Mol. Biol. 356:41–61 (2007).

    PubMed  Google Scholar 

  203. K. A. Giuliano, J. R. Haskins, and D. L. Taylor. Advances in high content screening for drug discovery. Assay Drug Dev. Technol. 1:565–577 (2003).

    PubMed  CAS  Google Scholar 

  204. R. T. Dunlay, W. J. Czekalski, and M. A. Collins. Overview of informatics for high content screening. Methods Mol. Biol. 356:269–280 (2007).

    PubMed  Google Scholar 

  205. D. J. Wild and G. D. Wiggins. Challenges for chemoinformatics education in drug discovery. Drug Discov. Today 11:436–439 (2006).

    PubMed  CAS  Google Scholar 

  206. D. J. Wild and G. D. Wiggins. Videoconferencing and other distance education techniques in chemoinformatics teaching and research at Indiana University. J. Chem. Inf. Model 46:495–502 (2006).

    PubMed  CAS  Google Scholar 

  207. C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, and E. L. Willighagen. Recent developments of the chemistry development kit (CDK)—an open-source java library for chemo—and bioinformatics. Curr. Pharm. Des. 12:2111–2120 (2006).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants RO1-GM078200 and P20-HG003890 to G.R.R and K.S. We would like to thank Kazu Saitou, Jungkap Park and Xinyuan Zhang for help with the illustrations and graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gus R. Rosania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosania, G.R., Crippen, G., Woolf, P. et al. A Cheminformatic Toolkit for Mining Biomedical Knowledge. Pharm Res 24, 1791–1802 (2007). https://doi.org/10.1007/s11095-007-9285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9285-5

Key words

Navigation