Skip to main content

Advertisement

Log in

Novel Microneedle Patches for Active Insulin Delivery are Efficient in Maintaining Glycaemic Control: An Initial Comparison with Subcutaneous Administration

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Good glycaemic control is essential to minimize the risk for diabetes-induced complications. Also, compliance is likely to be higher if the procedure is simple and painless. This study was designed to validate painless intradermal delivery via a patch-like microneedle array.

Materials and Methods

Diabetes was induced by an intravenous injection of streptozotocin (50 mg/kg bw) in adult male Sprague Dawley rats. Plasma insulin and blood glucose were measured before, during and after subcutaneous or intradermal (microneedles) infusion of insulin (0.2 IU/h) under Inactin-anaesthesia.

Results

Before insulin administration, all animals displayed a pronounced hyperglycaemia (19 ± 1 mM; 359 mg/dl). Administration of insulin resulted in a reduced plasma glucose independently of administration route (subcutaneous 7.5 ± 4.2, n = 9, and intradermal 11 ± 1.8, n = 9 after 240 min), but with less errors of the mean in the intradermal group. In the intradermal group, plasma insulin was increased in all latter measurements (72 ± 22, 81 ± 34, and 87 ± 20 μIU/ml), as compared to the first measurement (26 ± 13). In the subcutaneous group, plasma insulin was elevated during the last measurement (to 154 ± 3.5 μIU/ml from 21 ± 18).

Conclusion

This study presents a novel possibility of insulin delivery that is controllable and requires minimal training. This treatment strategy could improve compliance, and thus be beneficial for patients’ glycaemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329: 977–986 (1993).

  2. N. Sulliand and B. Shashaj. Long-term benefits of continuous subcutaneous insulin infusion in children with Type 1 diabetes: a 4-year follow-up. Diabet. Med. 23:900–906 (2006).

    Article  Google Scholar 

  3. M. Korytkowski, L. Niskanen, and T. Asakura. FlexPen: Addressing issues of confidence and convenience in insulin delivery. Clin. Ther. 27(Suppl B):S89–S100 (2005).

    Article  PubMed  Google Scholar 

  4. D. R. Owens, B. Zinman, and G. Bolli. Alternative routes of insulin delivery. Diabet. Med. 20:886–898 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. M. Davies. The reality of glycaemic control in insulin treated diabetes: defining the clinical challenges. Int. J. Obes. Relat. Metab. Disord. 28(Suppl 2):S14–S22 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. N. H. Birkebaek, A. Johansen, and J. Solvig. Cutis/subcutis thickness at insulin injection sites and localization of simulated insulin boluses in children with type 1 diabetes mellitus: need for individualization of injection technique? Diabet. Med. 15:965–971 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. M. Korytkowski, D. Bell, C. Jacobsen, and R. Suwannasari. A multicenter, randomized, open-label, comparative, two-period crossover trial of preference, efficacy, and safety profiles of a prefilled, disposable pen and conventional vial/syringe for insulin injection in patients with type 1 or 2 diabetes mellitus. Clin. Ther. 25:2836–2848 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. A. H. Barnett. Exubera inhaled insulin: a review. Int. J. Clin. Pract. 58:394–401 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. T. C. Woods, B. Zhang, F. Mercogliano, and S. M. Dinh. Response of the lung to pulmonary insulin dosing in the rat model and effects of changes in formulation. Diabetes Technol. Ther. 7:516–524 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. T. K. Mandal. Inhaled insulin for diabetes mellitus. Am. J. Health Syst. Pharm. 62:1359–1364 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. M. R. Prausnitz. Overcoming skin’s barrier: The search for effective and user-friendly drug delivery. Diabetes Technol. Ther. 3:233–236 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Teo, C. Shearwood, K. C. Ng, J. Lu, and S. Moochhala. In vitro and in vivo characterization of MEMS microneedles. Biomed Microdevices 7:47–52 (2005).

    Article  PubMed  Google Scholar 

  13. S. Kaushik, A. H. Hord, D. D. Denson, D. V. McAllister, S. Smitra, M. G. Allen, and M. R. Prausnitz. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92:502–504 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. A. Junod, A. E. Lambert, W. Stauffacher, and A. E. Renold. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J. Clin. Invest. 48:2129–2139 (1969).

    PubMed  CAS  Google Scholar 

  15. M. Madou. Fundamentals of Microfabrication, CRC, (1997).

  16. N. Roxhed, P. Griss, and G. Stemme. Reliable in-vivo penetration and transdermal injection using ultra-sharp hollow microneedles. In Proceedings IEEE International Conference on Solid State Sensors, Actuators, and Microsystems (Transducers), vol. 1, IEEE, Seoul, Korea, 2005, pp. 213–216.

  17. N. Roxhed, B. Samel, L. Nordquist, P. Griss, and G. Stemme. Compact, Seamless Integration of Active Dosing and Actuation with Microneedles for Transdermal Drug Delivery. In IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2006, pp. 414–417.

  18. D. C. Howey, R. R. Bowsher, R. L. Brunelle, H. M. Rowe, P. F. Santa, J. Downing-Shelton, and J. R. Woodworth. [Lys(B28), Pro(B29)]-human insulin: effect of injection time on postprandial glycemia. Clin. Pharmacol. Ther. 58:459–469 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. W. Martanto, S. P. Davis, N. R. Holiday, J. Wang, H. S. Gill, and M. R. Prausnitz. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 21:947–952 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. D. V. McAllister, P. M. Wang, S. P. Davis, J. H. Park, P. J. Canatella, M. G. Allen, and M. R. Prausnitz. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. U. S. A. 100:13755–13760 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. S. P. Davis, B. J. Landis, Z. H. Adams, M. G. Allen, and M. R. Prausnitz. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 37:1155–1163 (2004).

    Article  PubMed  Google Scholar 

  22. P. Griss, and G. Stemme. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. IEEE ASME J. Microelectromech. Syst. 12:296–301 (2003).

    Article  Google Scholar 

  23. H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. de Boer, S. Y. Yeshurun, M. Hefetz, R. van’t Oever, and A. van den Berg. Silicon micromachined hollow microneedles for transdermal liquid transport. IEEE ASME J. Microelectromech. Syst. 12:855–862 (2003).

    Article  Google Scholar 

  24. P. M. Wang, M. Cornwell, J. Hill, and M. R. Prausnitz. Precise microinjection into skin using hollow microneedles. J. Invest. Dermatol. 126:1080–1087 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. W. Martanto, J. S. Moore, O. Kashlan, R. Kamath, P. M. Wang, J. M. O’Neal, and M. R. Prausnitz. Microinfusion using hollow microneedles. Pharm. Res. 23: 104–113 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. R. K. Sivamani, B. Stoeber, G. C. Wu, H. Zhai, D. Liepmann, and H. Maibach. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res. Technol. 11:152–156 (2005).

    Article  PubMed  Google Scholar 

  27. M. Meurer, M. Stumvoll, and R. M. Szeimies. [Skin changes in diabetes mellitus]. Hautarzt 55:428–435 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. S. P. Davis, W. Martanto, M. G. Allen, and M. R. Prausnitz. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 52:909–915 (2005).

    Article  PubMed  Google Scholar 

  29. W. Waldhausland, and P. Bratusch-Marrain. [Causes of insulin resistance in type 1 diabetes]. Wien. Klin. Wochenschr. 97:359–363 (1985).

    Google Scholar 

  30. H. Wiig, O. Tenstad, and J. L. Bert. Effect of hydration on interstitial distribution of charged albumin in rat dermis in vitro. J. Physiol. 569:631–641 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. R. K. Reed, S. Lepsoe, and H. Wiig. Interstitial exclusion of albumin in rat dermis and subcutis in over- and dehydration. Am. J. Physiol. 257:H1819–H1827 (1989).

    PubMed  CAS  Google Scholar 

  32. J. Berger, C. Biswas, P. P. Vicario, H. V. Strout, R. Saperstein, and P. F. Pilch. Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340:70–72 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. E. Karnieli, P. J. Hissin, I. A. Simpson, L. B. Salans, and S. W. Cushman. A possible mechanism of insulin resistance in the rat adipose cell in streptozotocin-induced diabetes mellitus. Depletion of intracellular glucose transport systems. J. Clin. Invest. 68:811–814 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. G. Lisato, I. Cusin, A. Tiengo, S. Del Prato, and B. Jeanrenaud. The contribution of hyperglycaemia and hypoinsulinaemia to the insulin resistance of streptozotocin-diabetic rats. Diabetologia 35:310–315 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. W. Martanto, J. S. Moore, T. Couse, and M. R. Prausnitz. Mechanism of fluid infusion during microneedle insertion and retraction. J. Control. Release (2006).

  36. R. J. Heine. Unlocking the opportunity of tight glycaemic control. Promise ahead: the role of inhaled insulin in clinical practice. Diabetes Obes. Metab. 7(Suppl 1):S19–S23 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. E. V. Mukerjee, S. D. Collins, R. R. Isseroff, and R. L. Smith. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuators A, Phys. A114:267–275 (2004).

    Google Scholar 

  38. J. A. Matriano, M. Cormier, J. Johnson, W. A. Young, M. Buttery, K. Nyam, and P. E. Daddona. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm. Res. 19:63–70 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. W. Lin, M. Cormier, A. Samiee, A. Griffin, B. Johnson, C. L. Teng, G. E. Hardee, and P. E. Daddona. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18:1789–1793 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. S. A. Coulman, D. Barrow, A. Anstey, C. Gateley, A. Morrissey, N. Wilke, C. Allender, K. Brain, and J. C. Birchall. Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Curr. Drug. Deliv. 3:65–75 (2006).

    Article  Google Scholar 

  41. J. A. Mikszta, J. B. Alarcon, J. M. Brittingham, D. E. Sutter, R. J. Pettis, and N. G. Harvey. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8:415–419 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. M. Cormier, B. Johnson, M. Ameri, K. Nyam, L. Libiran, D. D. Zhang, and P. Daddona. Transdermal delivery of desmopressin using a coated microneedle array patch system. J. Control. Release 97:503–511 (2004).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The sharp-minded and kind-hearted help and support from Professor Leif Jansson is gratefully acknowledged. This work was funded by the Swedish Foundation for Strategic Research (SFF), the Swedish Association of Nephrology, the Petersenska Hemmet Foundation, and the Scandinavian Physiological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Nordquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordquist, L., Roxhed, N., Griss, P. et al. Novel Microneedle Patches for Active Insulin Delivery are Efficient in Maintaining Glycaemic Control: An Initial Comparison with Subcutaneous Administration. Pharm Res 24, 1381–1388 (2007). https://doi.org/10.1007/s11095-007-9256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9256-x

Key words

Navigation