Skip to main content

Advertisement

Log in

Novel L-Dopa and Dopamine Prodrugs Containing a 2-Phenyl-imidazopyridine Moiety

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to gain insight into the feasibility of enhancing the delivery of L-Dopa and dopamine to the brain by linking these neurotransmitters and L-Dopa ethyl ester to 2-phenyl-3-carboxymethyl-imidazopyridine compounds giving rise to the so-called Dopimid compounds.

Materials and Methods

A number of Dopimid compounds were synthesized and both stability and binding studies to dopaminergic and benzodiazepine receptors were performed. To evaluate whether Dopimid compounds are P-gp substrates, [3H]ritonavir uptake experiments and bi-directional transport studies on confluent MDCKII-MDR1 monolayers were carried out. The brain penetration properties of Dopimid compounds were estimated by the Clark’s computational model and evaluated by investigation of their transport across BBMECs monolayers. The dopamine levels following the intraperitoneal administration of the selected Dopimid compounds were measured in vivo by using brain microdialysis in rat.

Results

Tested compounds were adequately stable in solution buffered at pH 7.4 but undergo faster cleavage in dilute rat serum at 37°C. Receptor binding studies showed that Dopimid compounds are essentially devoid of affinity for dopaminergic and benzodiazepine receptors. [3H]ritonavir uptake experiments indicated that selected Dopimid compounds, like L-Dopa and dopamine hydrochloride, are not substrates of P-gp and it was also confirmed by bi-directional transport experiments across MDCKII-MDR1 monolayers. By Clark’s model a significant brain penetration was deduced for L-Dopa ethyl ester and dopamine derivatives. Transport studies involving BBMECs monolayers indicated that some of these compounds should be able to cross the BBB. Interestingly, the rank order of apparent permeability (P app) values observed in these assays parallels that calculated by the computational approach. Brain microdialysis experiments in rat showed that intraperitoneal acute administration of some Dopimid compounds induced a dose-dependent increase in cortical dopamine output.

Conclusion

Based on these results, it may be concluded that some Dopimid compounds can be proposed as novel L-Dopa and dopamine prodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Bäckstrom, E. Honkanen, A. Pippuri, P. Kairisalo, J. Pystynen, K. Heinola, E. Nissinen, I. B. Linden, P. T. Männisto, S. Kaakkola, and P. Pohto. Synthesis of some novel potent and selective catechol O-methyltransferase inhibitors. J. Med. Chem. 32:841–846 (1989).

    Article  PubMed  Google Scholar 

  2. A. Di Stefano, B. Mosciatti, G. M. Cingolani, G. Giorgioni, M. Ricciutelli, I. Cacciatore, P. Sozio, and F. Claudi. Dimeric L-Dopa derivatives as potential prodrugs. Biorg. Med. Chem. Lett. 11:1085–1088 (2001).

    Article  Google Scholar 

  3. H. Wang, J. Lee, M. Tsai, H. Lu, and W. Hsu. Synthesis and pharmcological activities of a novel tripeptide mimetic dopamine prodrug. Biorg. Med. Chem. Lett. 5:2195–2198 (1995).

    Article  CAS  Google Scholar 

  4. R. Pahwa and W. C. Koller. Advances in the treatment of Parkinson’s disease. Drugs Today 34:95–105 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. J. Jankovic and C. D. Marsden. Therapeutic strategies in Parkinson’s disease. In J. Jankovic and E. Tolosa (eds.), Parkinson’s Disease and Movement Disorders, Urban, Munich, 1988, pp. 95–119.

    Google Scholar 

  6. B. Asproni, A. Pau, M. Bitti, M. Melosu, R. Cerri, L. Dazzi, E. Seu, E. Maciocco, E. Sanna, F. Busonero, G. Talani, L. Pusceddu, C. Altomare, G. Trapani, and G. Biggio. Synthesis and pharmacological evaluation of 1-[(1,2-Diphenyl-1H-4-imidazolyl)methyl]-4-phenylpiperazines with clozapine-like mixed activities at dopamine D2, Serotonin and GABAA receptors. J. Med. Chem. 45:4655–4688 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. J. Benavides, B. Peny, D. Ruano, J. Vitorica, and B. Scatton. Comparative autoradiographic distribution of central omega (benzodiazepine) modulatory site subtypes with high, intermediate and low affinity for zolpidem and alpidem. Brain Res. 604:240–250 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. A. Durand, J. P. Thenot, G. Bianchetti, and P. L. Morselli. Comparative pharmacokinetic profile of two imidazopyridine drugs: zolpidem and alpidem. Drug Metab. Rev. 24:239–266 (1992).

    PubMed  CAS  Google Scholar 

  9. A. Daniele, A. Albanese, G. Gainotti, B. Gregari, and P. Bartolomeo. Zolpidem in Parkinson’s disease. Lancet 349:1222–1223 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. G. Trapani, V. Laquintana, A. Latrofa, J. Ma, K. Reed, M. Serra, G. Biggio, G. Liso, and J. M. Gallo. Peripheral benzodiazepine receptor ligand. Melphalan conjugates for potential selective drug delivery to brain tumors. Bioconjug. Chem. 14:830–839 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. L. Nakonieczna, W. Przychodzen, and A. Chimiak. A new convenient route for the synthesis of DOPA peptides. Liebigs Ann. Chem. 1055–1058 (1994).

  12. D. R. Cooper, C. Marrel, H. van de Waterbeemd, B. Testa, P. Jenner, and C. D. Marsden. L-Dopa esters as potential prodrugs: behavioural activity in experimental models of Parkinson’s disease. J. Pharm. Pharmacol. 39:627–635 (1987).

    PubMed  CAS  Google Scholar 

  13. F. Tang, K. Horie, and R. T. Borchardt. Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm. Res. 19:765–772 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. D. E. Clark. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J. Pharm. Sci. 88:815–821 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. P. Ertl, B. Rohde, and P. Selzer. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43:3714–3717 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. K. L. Audus and R. T. Borchardt. Bovine brain microvessel endothelial cell monolayers as a model for blood–brain barrier. Ann. N.Y. Acad. Sci. USA 507:9–18 (1987).

    Article  CAS  Google Scholar 

  17. D. Pal, K. L. Audus, and T. J. Siahaan. Modulation of cellular adhesión in bovine brain microvessel endotelial cells by a decapeptide. Brain Res. 747:103–113 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. S. L. Glynn and M. Yazdanian. In vitro blood–brain barrier permeability of nevirapine compared to other HIV antiretroviral agents. J. Pharm. Sci. 87:306–310 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. I. Megard, A. Garrigues, S. Orlowski, S. Jorajuria, P. Clayette, and E. Ezan, A. Mabondzo. A co-culture-based model of human blood–brain barrier: application to active transport of indinavir and in vivo–in vitro correlation. Brain Res. 927:153–157 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. G. Paxinos and C. Watson. The rat brain in stereotaxic coordinates, Academic, London, 1982.

    Google Scholar 

  21. L. Dazzi, M. Serra, M. L. Porceddu, A. Sanna, M. F. Chessa, and G. Biggio. Enhancement of basal and pentylenetetrazol (PTZ)-stimulated dopamine release in the brain of freely moving rats by PTZ-induced kindling. Synapse 26:351–358 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. M. D. Majewska, N. L. Harrison, R. D. Schwartz, J. L. Barker, and S. M. Paul. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. E. Giesen-Crouse. Peripheral benzodiazepine receptors, Academic Press, London, 1993.

    Google Scholar 

  24. G. Trapani, M. Franco, L. Ricciardi, A. Latrofa, G. Genchi, E. Sanna, F. Tuveri, E. Cagetti, G. Biggio, and G. Liso. Synthesis and binding affinity of 2-phenyl-imidazo[1,2-a]pyridine derivatives for both central and peripheral benzodiazepine receptors. A new series of high-affinity and selective ligands for the peripheral type. J. Med. Chem. 40:3109–3118 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. G. Trapani, M. Franco, A. Latrofa, L. Ricciardi, A. Carotti, M. Serra, E. Sanna, G. Biggio, and G. Liso. Novel 2-phenyl-imidazo[1,2-a]pyridine derivatives as potent and selective ligands for peripheral benzodiazepine receptors. Synthesis, binding affinity, and in vivo studies. J. Med. Chem. 42:3934–3941 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. G. Le Fur, M. L. Perrier, N. Vaucher, F. Imbant, A. Flamier, A. Uzan, C. Renault, M. C. Dubroeucq, and C. Gueremy. Peripheral binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-(1-methylpropyl)-3-isoquinolinecarboxamide. I. In vitro studies. Life Sci. 32:1839–1847 (1983).

    Article  PubMed  Google Scholar 

  27. A. Albert. Chemical aspects of selective toxicity. Nature 182:421–423 (1958).

    Article  PubMed  CAS  Google Scholar 

  28. A. Tsuji, T. Terasaki, Y. Takabatake, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51:1427–1437 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. M. Yamazaki, W. E. Neway, T. Ohe, I. Chen, J. F. Rowe, J. H. Hochman, M. Chiba, and J. H. Lin. In vitro substrate identification studies for P-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 296:723–735 (2001).

    PubMed  CAS  Google Scholar 

  30. N. Bodor and P. Buchwald. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv. Drug Deliv. Rev. 36:229–254 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. U. Norinder and M. Haeberlein. Computational approaches to the prediction of the blood–brain distribution. Adv. Drug Deliv. Rev. 54:291–313 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. M. V. Shah, K. L. Audus, and R. T. Borchardt. The application of bovine brain microvessel endothelial-cell monolayers grown onto polycarbonate membranes in vitro to estimate the potential permeability of solutes through the blood–brain barrier. Pharm. Res. 7:624–627 (1989).

    Article  Google Scholar 

  33. J. B. Jr Justice. Quantitative microdialysis of neurotransmitters. J. Neurosci. Methods 48:263–276 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. A. Eltayb, M.-L. G. Wademberg, and T. H. Svensson. Enhanced cortical dopamine output and antipsycotic-like effect of raclopride with adjunctive low-dose L-Dopa. Biol. Psychiatry 58:337–343 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MIUR) (COFIN 2003 of G.L.). We thank Mr. Giovanni Dipinto for skilful technical assistance in recording mass spectra. The authors would like to express their thanks to Dr. Soumyajit Majumdar from the Department of Pharmaceutics, School of Pharmacy, the University of Mississippi, for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Trapani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denora, N., Laquintana, V., Lopedota, A. et al. Novel L-Dopa and Dopamine Prodrugs Containing a 2-Phenyl-imidazopyridine Moiety. Pharm Res 24, 1309–1324 (2007). https://doi.org/10.1007/s11095-007-9255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9255-y

Key words

Navigation