Skip to main content

Advertisement

Log in

Performance of an Iterative Two-Stage Bayesian Technique for Population Pharmacokinetic Analysis of Rich Data Sets

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 23 March 2007

Abstract

Purpose

To test the suitability of an Iterative Two-Stage Bayesian (ITSB) technique for population pharmacokinetic analysis of rich data sets, and to compare ITSB with Standard Two-Stage (STS) analysis and nonlinear Mixed Effect Modeling (MEM).

Materials and Methods

Data from a clinical study with rapacuronium and data generated by Monte Carlo simulation were analyzed by an ITSB technique described in literature, with some modifications, by STS, and by MEM (using NONMEM). The results were evaluated by comparing the mean error (accuracy) and root mean squared error (precision) of the estimated parameter values, their interindividual standard deviation, correlation coefficients, and residual standard deviation. In addition, the influence of initial estimates, number of subjects, number of measurements, and level of residual error on the performance of ITSB were investigated.

Results

ITSB yielded best results, and provided precise and virtually unbiased estimates of the population parameter means, interindividual variability, and residual standard deviation. The accuracy and precision of STS was poor, whereas ITSB performed better than MEM.

Conclusions

ITSB is a suitable technique for population pharmacokinetic analysis of rich data sets, and in the presented data set it is superior to STS and MEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

ITSB:

iterative two-stage Bayesian

ME:

mean error

MEM:

(nonlinear) Mixed effect modeling

RMSE:

root mean squared error

STS:

standard two-stage

References

  1. L. B. Sheiner and T. M. Ludden. Population pharmacokinetics/dynamics. Annu. Rev. Pharmacol. Toxicol. 32:185–209 (1992).

    PubMed  CAS  Google Scholar 

  2. L. B. Sheiner, S. Beal, B. Rosenberg, and V. V. Marathe. Forecasting individual pharmacokinetics. Clin. Pharmacol. Ther. 26:294–305 (1979).

    PubMed  CAS  Google Scholar 

  3. L. B. Sheiner and S. L. Beal. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J. Pharm. Sci. 71:1344–1348 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. R. W. Jelliffe, A. Schumitzky, D. Bayard, M. Milman, M. Van Guilder, X. Wang, F. Jiang, X. Barbaut, and P. Maire. Model-based, goal-oriented, individualized drug therapy. Clin. Pharmacokinet. 34:57–77 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. A. Bustad, D. Terziivanov, R. Leary, R. Port, A. Schumitzky, and R. Jelliffe. Parametric and nonparametric population methods—their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Clin. Pharmacokinet. 45:365–383 (2006).

    Article  PubMed  Google Scholar 

  6. G. Suzy. Monte Carlo Parametric Expectation Maximization (MC-PEM) method for analyzing population pharmacokinetic/ pharmacodynamic (PK/PD) data. Abstracts of the Annual Meeting of the Population Approach Group in Europe. ISSN 1871–6032 (available from URL http://www.page-meeting.org/abstract=881) (2006).

  7. J. L. Steimer, A. Mallet, J. L. Golmard, and J. F. Boisvieux. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab. Rev. 15:265–292 (1984).

    PubMed  CAS  Google Scholar 

  8. A. Racine-Poon and A. F. M. Smith. Population models. In D. A. Berry (ed.), Statistical Methodology in the Pharmaceutical Sciences, Marcel Dekker, New York, 1990, pp. 139–162 (Chapter 5).

    Google Scholar 

  9. F. Mentré, and R. Gomeni. A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. J. Biopharm. Stat. 5:141–158 (1995).

    Article  PubMed  Google Scholar 

  10. J. E. Bennett, and J. C. Wakefield. A comparison of a Bayesian population method with two methods as implemented in commercially available software. J. Pharmacokinet. Biopharm. 24:403–432 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. D. J. Lunn, N. Best, A. Thomas, J. Wakefield, and D. Spiegelhalter. Bayesian analysis of population PK/PD model: general concepts and software. J. Pharmacokinet. Pharmacodyn. 29:271–307 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. P. Girard and F. Mentré. A comparison of estimation methods in nonlinear mixed effects models using a blind analysis. Abstracts of the Annual Meeting of the Population Approach Group in Europe. ISSN 1871-6032 (available from URL http://www.page-meeting.org/?abstract=834) (2005).

  13. S. Schiere, J. H. Proost, M. Schuringa, and J. M. K. H. Wierda. Pharmacokinetics and pharmacokinetic–dynamic relationship between rapacuronium (Org 9487) and its 3-desacetyl metabolite (Org 9488). Anesth. Analg. 88:640–647 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes. Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  15. L. B. Sheiner, and S. L. Beal. Some suggestions for measuring predictive performance. J. Pharmacokinet. Biopharm. 9:503–512 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. J. H. Proost and D. K. F. Meijer. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput. Biol. Med. 22:155–163 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. Proost.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-007-9261-0

Appendix

Appendix

The following control file was used in the NONMEM analysis. For practical reasons parameters were expressed in liters and liters per minute for volume and clearance parameters, respectively.

  • $PROBMCRA

  • $DATA mcra.dat

    • IGNORE = C

  • $INPUT ID TIME WGT AMT RATE DV

  • $SUBROUTINES ADVAN11 TRANS4

  • $PK

    • CALLFL = 1

    • V1=THETA(1)*EXP(ETA(1))

    • V2=THETA(2)*EXP(ETA(2))

    • V3=THETA(3)*EXP(ETA(3))

    • CL=THETA(4)*EXP(ETA(4))

    • Q3=THETA(6)*EXP(ETA(6))

    • Q2=(THETA(2)*(THETA(6)/THETA(3) + THETA(5)))*EXP(ETA(5))

    • S1=V1

  • $ERROR

    • CALLFL = 0

    • Y=LOG(F)+ERR(1)

  • ; Starting at the exact values

  • $THETA (0, 3.64)(0, 3.01)(0, 6.44)(0, 0.51)(0, 0.048)(0, 0.051)

  • $OMEGA 0.0533 0.1217 0.1063 0.1245 0.2215 0.0650

  • $SIGMA 0.01

  • ;Without POSTHOC only typical values are in the table

  • $ESTIMATION MAX = 9999 SIG = 6 METHOD = COND NOABORT POSTHOC

  • $TABLE TIME V1 V2 V3 CL Q2 Q3 DV

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proost, J.H., Eleveld, D.J. Performance of an Iterative Two-Stage Bayesian Technique for Population Pharmacokinetic Analysis of Rich Data Sets. Pharm Res 23, 2748–2759 (2006). https://doi.org/10.1007/s11095-006-9116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9116-0

Key words

Navigation