Skip to main content

Advertisement

Log in

The Role of the VPS4A-Exosome Pathway in the Intrinsic Egress Route of a DNA-Binding Anticancer Drug

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

This study investigates the subcellular pharmacokinetics of drug efflux in cancer cells and explores the role of the multivesicular body (MVB) in facilitating efflux of doxorubicin, a widely used DNA-targeting anticancer agent, from the nucleus.

Methods

Human erythroleukemic K562 cells were pulsed with doxorubicin and then chased in drug-free media to allow for efflux. Microscopy and biochemical techniques were used to visualize the subcellular localization of the drug and measure drug content and distribution during the efflux period. To explore the role of the MVB in doxorubicin efflux, K562 cells were transfected with dominant negative mutant forms of VPS4a–GFP chimeras.

Results

Although the intracellular concentration of drug exceeds the extracellular concentration, nuclear efflux of doxorubicin occurs in living cells at a faster rate than doxorubicin unbinding from isolated nuclei into drug-free buffer. In cells expressing dominant negative VPS4a, doxorubicin accumulates in VPS4a-positive vesicles and drug sequestration is inhibited, directly implicating the MVB pathway in the egress route of doxorubicin in this cell type.

Conclusions

Cellular membranes are a component of the doxorubicin efflux mechanism in K562 cells. Dominant-negative GFP chimeric mutants can be used to elucidate the role of specific membrane trafficking pathways in subcellular drug transport routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MDR:

multidrug resistance

MVB:

multivesicular body

VPS4a:

vacuolar protein sorting 4a

GFP:

green fluorescent protein

HEPES:

4-2-hydroxyethyl-1-piperazineethanesulfonic acid

EGTA:

ethyleneglycol-bis-(β-aminoethylether)-N, N, N′, N′-tetraacetic acid

EDTA:

ethylenediamine-tetraacetic acid

ER:

endoplasmic reticulum

References

  1. M. M. Gottesman. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53:615–627 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. G. Chang. Multidrug resistance ABC transporters. FEBS Lett. 555:102–105 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. A. K. Larsen, A. E. Escargueil, and A. Skladanowski. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 85:217–229 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. M. J. Van Luyn, M. Muller, J. Renes, C. Meijer, R. J. Scheper, E. F. Nienhuis, N. H. Mulder, P. L. Jansen, and E. G. De Vries. Transport of glutathione conjugates into secretory vesicles is mediated by the multidrug-resistance protein 1. Int. J. Cancer 76:55–62 (1998).

    Article  PubMed  Google Scholar 

  5. A. Rajagopal and S. M. Simon. Subcellular localization and activity of multidrug resistance proteins. Mol. Biol. Cell 14:3389–3399 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. A. B. Shapiro, K. Fox, P. Lee, Y. D. Yang, and V. Ling. Functional intracellular P-glycoprotein. Int. J. Cancer 76:857–864 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. D. A. Gewirtz. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57:727–741 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. J. A. Endicott and V. Ling. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 58:137–171 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. S. P. Cole, G. Bhardwaj, J. H. Gerlach, J. E. Mackie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A. M. Duncan, and R. G. Deeley. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Y. Gong, M. Duvvuri, and J. P. Krise. Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J. Biol. Chem. 278:50234–50239 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. J. E. Gervasoni Jr, S. Z. Fields, S. Krishna, M. A. Baker, M. Rosado, K. Thuraisamy, A. A. Hindenburg, and R. N. Taub. Subcellular distribution of daunorubicin in P-glycoprotein-positive and -negative drug-resistant cell lines using laser-assisted confocal microscopy. Cancer Res. 51:4955–4963 (1991).

    PubMed  CAS  Google Scholar 

  12. M. A. Sognier, Y. Zhang, R. L. Eberle, K. M. Sweet, G. A. Altenberg, and J. A. Belli. Sequestration of doxorubicin in vesicles in a multidrug-resistant cell line (LZ-100). Biochem. Pharmacol. 48:391–401 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. C. Bour-Dill, M. P. Gramain, J. L. Merlin, S. Marchal, and F. Guillemin. Determination of intracellular organelles implicated in daunorubicin cytoplasmic sequestration in multidrug-resistant MCF-7 cells using fluorescence microscopy image analysis. Cytometry 39:16–25 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. P. Ferrao, P. Sincock, S. Cole, and L. Ashman. Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia. Leuk. Res. 25:395–405 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. C. M. Fader, A. Savina, D. Sanchez, and M. I. Colombo. Exosome secretion and red cell maturation: exploring molecular components involved in the docking and fusion of multivesicular bodies in K562 cells. Blood Cells Mol. Diseases 35:153–157 (2005).

    Article  CAS  Google Scholar 

  16. A. Savina, M. Vidal, and M. I. Colombo. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115:2505–2515 (2002).

    PubMed  CAS  Google Scholar 

  17. A. Savina, M. Furlan, M. Vidal, and M. I. Colombo. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278:20083–20090 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. S. Simon, D. Roy, and M. Schindler. Intracellular pH and the control of multidrug resistance. Proc. Natl. Acad. Sci. USA 91:1128–1132 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. R. Safaei, B. J. Larson, T. C. Cheng, M. A. Gibson, S. Otani, W. Naerdemann, and S. B. Howell. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 4:1595–1604 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. K. Shedden, X. T. Xie, P. Chandaroy, Y. T. Chang, and G. R. Rosania. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 63:4331–4337 (2003).

    PubMed  CAS  Google Scholar 

  21. M. Babst, T. K. Sato, L. M. Banta, and S. D. Emr. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. Embo J. 16:1820–1831 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. M. Babst, B. Wendland, E. J. Estepa, and S. D. Emr. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. Embo J. 17:2982–2993 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. S. Scheuring, R. A. Rohricht, B. Schoning-Burkhardt, A. Beyer, S. Muller, H. F. Abts, and K. Kohrer. Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking. J. Mol. Biol. 312:469–480 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. J. E. Garrus, U. K. von Schwedler, O. W. Pornillos, S. G. Morham, K. H. Zavitz, H. E. Wang, D. A. Wettstein, K. M. Stray, M. Cote, R. L. Rich, D. G. Myszka, and W. I. Sundquist. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. N. Bishop and P. Woodman. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell 11:227–239 (2000).

    PubMed  CAS  Google Scholar 

  26. E. Klein, H. Ben-Bassat, H. Neumann, P. Ralph, J. Zeuthen, A. Polliack, and F. Vanky. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int. J. Cancer 18:421–431 (1976).

    Article  PubMed  CAS  Google Scholar 

  27. R. Hancock A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J. Struct. Biol. 146:281–290 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. A. Rabbani, M. Iskandar, and J. Ausio. Daunomycin-induced unfolding and aggregation of chromatin. J. Biol. Chem. 274:18401–18406 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. M. Duvvuri, W. Feng, A. Mathis, and J. P. Krise. A cell fractionation approach for the quantitative analysis of subcellular drug disposition. Pharm. Res. 21:26–32 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. P. L. Paine, L. C. Moore, and S. B. Horowitz. Nuclear envelope permeability. Nature 254:109–114 (1975).

    Article  PubMed  CAS  Google Scholar 

  31. D. J. Katzmann, M. Babst, and S. D. Emr. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. R. M. Johnstone, A. Mathew, A. B. Mason, and K. Teng. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J. Cell Physiol. 147:27–36 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. C. K. Raymond, I. Howald-Stevenson, C. A. Vater, and T. H. Stevens. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell 3:1389–1402 (1992).

    PubMed  CAS  Google Scholar 

  34. T. A. Chan, H. Hermeking, C. Lengauer, K. W. Kinzler, and B. Vogelstein. 14-3-3 Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. K. Kiyomiya, S. Matsuo, and M. Kurebe. Mechanism of specific nuclear transport of adriamycin: the mode of nuclear translocation of adriamycin–proteasome complex. Cancer Res. 61:2467–2471 (2001).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Wesley Sundquist for the GFP–VPS4a EQ and KQ constructs. This work was supported by a grant from the National Institutes of Health (CA104686, G.R.R.). V.Y.C. was supported by a Pre-Doctoral Fellowship from the Pharmaceutical Research and Manufacturers of America Foundation and a Pharmacological Sciences Training Grant from the National Institute of General Medical Sciences (GM07767). Contents are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gus R. Rosania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, V.Y., Posada, M.M., Blazer, L.L. et al. The Role of the VPS4A-Exosome Pathway in the Intrinsic Egress Route of a DNA-Binding Anticancer Drug. Pharm Res 23, 1687–1695 (2006). https://doi.org/10.1007/s11095-006-9043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9043-0

Key words

Navigation