Skip to main content
Log in

Interaction of Native Bile Acids with Human Apical Sodium-Dependent Bile Acid Transporter (hASBT): Influence of Steroidal Hydroxylation Pattern and C-24 Conjugation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The human apical sodium-dependent bile acid transporter (hASBT) is a potential target for drug delivery, but an understanding of hASBT substrate requirements is lacking. The objective of this study was to characterize hASBT interaction with its native substrates, bile acids, and to evaluate C-24 conjugation and steroidal hydroxylation on transport affinity and inhibition potency.

Methods

Transport and inhibition kinetics of 15 bile acids were evaluated (cholate, chenodeoxycholate, deoxycholate, ursodeoxycholate, and lithocholate, including their glycine and taurine conjugates) with an hASBT–Madin-Darby canine kidney (MDCK) monolayer assay. Samples were analyzed via liquid chromatography–mass spectrometry (LC-MS) or chromatography–mass spectrometry–mass spectrometry (LC-MS-MS).

Results

C-24 conjugation improved the inhibitory potency of all native bile acids. There was an inverse association between number of steroidal hydroxyl groups and inhibitory potency. Glycolithocholate and taurolithocholate were the most potent inhibitors. Results from transport studies followed trends from inhibition studies. Conjugated dihydroxy and monohydroxy bile acids exhibited the highest hASBT-mediated transport (i.e., lower K t and higher J max). Across the 15 bile acids, K t generally followed K i. Additionally, J max correlated with K i, where greater inhibition potency was associated with higher transport capacity.

Conclusion

C-24 conjugation and steroidal hydroxylation pattern modulated native bile acid interaction with hASBT, with C-24 effect dominating steroidal hydroxylation effect. Results indicate that bile acid binding to hASBT may be the rate-limiting step in the apical transport of bile acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABL:

aqueous boundary layer

CA:

cholate

CDCA:

chenodeoxycholate

DCA:

deoxycholate

GCA:

glycocholate

GCDCA:

glycochenodeoxycholate

GDCA:

glycodeoxycholate

GUDCA:

glycoursodeoxycholate

hASBT:

human apical sodium-dependent bile acid transporter

HBSS:

Hank's balanced salt solution

MDCK:

Madin-Darby canine kidney

SLC:

solute carrier family

TCA:

taurocholate

TCDCA:

taurochenodeoxycholate

TDCA:

taurodeoxycholate

TUDCA:

tauroursodeoxycholate

UDCA:

ursodeoxycholate

References

  1. S. Tolle-Sander K. A. Lentz D. Y. Maeda A. Coop J. E. Polli (2004) ArticleTitleIncreased acyclovir oral bioavailability via a bile acid conjugate Mol. Pharm. 1 40–48 Occurrence Handle15832499 Occurrence Handle1:CAS:528:DC%2BD3sXovVeru7w%3D Occurrence Handle10.1021/mp034010t

    Article  PubMed  CAS  Google Scholar 

  2. G. A. Kullak-Ublick B. Stieger P. J. Meier (2004) ArticleTitleEnterohepatic bile salt transporters in normal physiology and liver disease Gastroenterology 126 322–342 Occurrence Handle14699511 Occurrence Handle1:CAS:528:DC%2BD2cXhtFGnur0%3D Occurrence Handle10.1053/j.gastro.2003.06.005

    Article  PubMed  CAS  Google Scholar 

  3. E. Y. Zhang M. A. Phelps A. Banerjee C. M. Khantwal C. Chang F. Helsper P. W. Swaan (2004) ArticleTitleTopology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2) Biochemistry 43 11380–11392 Occurrence Handle15350125 Occurrence Handle1:CAS:528:DC%2BD2cXmslylt7k%3D Occurrence Handle10.1021/bi049270a

    Article  PubMed  CAS  Google Scholar 

  4. L. Lack (1979) ArticleTitleProperties and biological significance of the ileal bile salt transport system Environ. Health Perspect. 33 79–90 Occurrence Handle540627 Occurrence Handle1:CAS:528:DyaL3cXkt1eisbg%3D

    PubMed  CAS  Google Scholar 

  5. S. N. Marcus C. D. Schteingart M. L. Marquez A. F. Hofmann Y. Xia J. H. Steinbach H. T. Ton-Nu J. Lillienau M. A. Angellotti A. Schmassmann (1991) ArticleTitleActive absorption of conjugated bile acids in vivo. Kinetic parameters and molecular specificity of the ileal transport system in the rat Gastroenterology 100 212–221 Occurrence Handle1983823 Occurrence Handle1:CAS:528:DyaK3MXitVCht7s%3D

    PubMed  CAS  Google Scholar 

  6. E. R. Schiff N. C. Small J. M. Dietschy (1972) ArticleTitleCharacterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat J. Clin. Invest. 51 1351–1362 Occurrence Handle5024036 Occurrence Handle1:CAS:528:DyaE38Xktlaitbs%3D Occurrence Handle10.1172/JCI106931

    Article  PubMed  CAS  Google Scholar 

  7. R. Aldini A. Roda M. Montagnani C. Cerre R. Pellicciari E. Roda (1996) ArticleTitleRelationship between structure and intestinal absorption of bile acids with a steroid or side-chain modification Steroids 61 590–597 Occurrence Handle8910972 Occurrence Handle1:CAS:528:DyaK28XmsFShurs%3D Occurrence Handle10.1016/S0039-128X(96)00119-5

    Article  PubMed  CAS  Google Scholar 

  8. B. Hagenbuch P. Dawson (2004) ArticleTitleThe sodium bile salt cotransport family SLC10 Pflugers Arch. 447 566–570 Occurrence Handle12851823 Occurrence Handle1:CAS:528:DC%2BD2cXhtVygtr8%3D Occurrence Handle10.1007/s00424-003-1130-z

    Article  PubMed  CAS  Google Scholar 

  9. A. Balakrishnan D. J. Sussman J. E. Polli (2005) ArticleTitleDevelopment of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hASBT) Pharm. Res. 22 1269–1280 Occurrence Handle16078136 Occurrence Handle1:CAS:528:DC%2BD2MXmvFWit7k%3D Occurrence Handle10.1007/s11095-005-5274-8

    Article  PubMed  CAS  Google Scholar 

  10. A. Balakrishnan J. E. Polli (2005) ArticleTitleDeleterious effect of high transporter expression in the estimation of transporter kinetics AAPS J. 7 R6224

    Google Scholar 

  11. M. A. Tanner (1992) Tools for Statistical Inference, vol. 67: Lecture Notes in Statistics Springer-Verlag Berlin

    Google Scholar 

  12. K. A. Lentz J. W. Polli S. A. Wring J. E. Humphreys J. E. Polli (2000) ArticleTitleInfluence of passive permeability on apparent P-glycoprotein kinetics Pharm. Res. 17 1456–1460 Occurrence Handle11303953 Occurrence Handle1:CAS:528:DC%2BD3MXit1egsL8%3D Occurrence Handle10.1023/A:1007692622216

    Article  PubMed  CAS  Google Scholar 

  13. A. L. Craddock M. W. Love R. W. Daniel L. C. Kirby H. C. Walters M. H. Wong P. A. Dawson (1998) ArticleTitleExpression and transport properties of the human ileal and renal sodium-dependent bile acid transporter Am. J. Physiol. 274 G157–G169 Occurrence Handle9458785 Occurrence Handle1:CAS:528:DyaK1cXot1SjtQ%3D%3D

    PubMed  CAS  Google Scholar 

  14. C. E. Chandler L. M. Zaccaro J. B. Moberly (1993) ArticleTitleTransepithelial transport of cholyltaurine by Caco-2 cell monolayers is sodium dependent Am. J. Physiol. 264 G1118–G1125 Occurrence Handle8333540 Occurrence Handle1:CAS:528:DyaK3sXltlKhsr4%3D

    PubMed  CAS  Google Scholar 

  15. M. Kagedahl P. W. Swaan C. T. Redemann M. Tang C. S. Craik F. C. Szoka SuffixJr. S. Oie (1997) ArticleTitleUse of the intestinal bile acid transporter for the uptake of cholic acid conjugates with HIV-1 protease inhibitory activity Pharm. Res. 14 176–180 Occurrence Handle9090705 Occurrence Handle1:STN:280:ByiB2cngvFA%3D Occurrence Handle10.1023/A:1012044526054

    Article  PubMed  CAS  Google Scholar 

  16. W. Kramer S. Stengelin K. H. Baringhaus A. Enhsen H. Heuer W. Becker D. Corsiero F. Girbig R. Noll C. Weyland (1999) ArticleTitleSubstrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters J. Lipid Res. 40 1604–1617 Occurrence Handle10484607 Occurrence Handle1:CAS:528:DyaK1MXmtVajt78%3D

    PubMed  CAS  Google Scholar 

  17. P. W. Swaan K. M. Hillgren F. C. Szoka SuffixJr. S. Oie (1997) ArticleTitleEnhanced transepithelial transport of peptides by conjugation to cholic acid Bioconjug. Chem. 8 520–525 Occurrence Handle9258450 Occurrence Handle1:CAS:528:DyaK2sXktlemu7g%3D Occurrence Handle10.1021/bc970076t

    Article  PubMed  CAS  Google Scholar 

  18. P. W. Swaan F. C. Szoka SuffixJr. S. Oie (1997) ArticleTitleMolecular modeling of the intestinal bile acid carrier: a comparative molecular field analysis study J. Comput. Aided Mol. Des. 11 581–588 Occurrence Handle9491350 Occurrence Handle1:CAS:528:DyaK1cXht1Oktr8%3D Occurrence Handle10.1023/A:1007919704457

    Article  PubMed  CAS  Google Scholar 

  19. K. H. Baringhaus H. Matter S. Stengelin W. Kramer (1999) ArticleTitleSubstrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. II. A reliable 3D QSAR pharmacophore model for the ileal Na(+)/bile acid cotransporter J. Lipid Res. 40 2158–2168 Occurrence Handle10588941 Occurrence Handle1:CAS:528:DC%2BD3cXitVym

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Institutes of Health grant DK67530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Polli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, A., Wring, S.A. & Polli, J.E. Interaction of Native Bile Acids with Human Apical Sodium-Dependent Bile Acid Transporter (hASBT): Influence of Steroidal Hydroxylation Pattern and C-24 Conjugation. Pharm Res 23, 1451–1459 (2006). https://doi.org/10.1007/s11095-006-0219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-0219-4

Key Words

Navigation