Skip to main content

Advertisement

Log in

Dense Gas Processing of Micron-Sized Drug Formulations Incorporating Hydroxypropylated and Methylated Beta-Cyclodextrin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Because of their importance in pharmaceutical applications, hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin have been selected to study the formation of micronized complexes incorporating active pharmaceutical ingredients (APIs) and cyclodextrins (CDs) by dense gas (DG) processing.

Methods

A single-step DG technique was used as an alternative to conventional methods for the manufacturing of API/CD complexes. The DG technology is highly attractive in the pharmaceutical industry because of its potential to generate micronized particles with controlled particle size distributions at moderate operating conditions. The effect of the aerosol solvent extraction system (ASES) processing on the dissolution performance of naproxen (NPX) was examined.

Results

The CDs were produced as microspheres smaller than 3 μm. The coprecipitation of each CD with NPX resulted in the production of microparticles with enhanced dissolution rates.

Conclusions

The ASES was operated under mild conditions and generated micron-sized spherical particles that could be of particular interest in formulations for pulmonary delivery.

Particular advantages of the technique are that (1) nontoxic solvents are used, and (2) it is suitable for the processing of thermally labile compounds. The proposed process can create opportunities to improve current administration routes and exploit novel delivery systems for drug formulations incorporating CDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

API:

active pharmaceutical ingredient

ASES:

aerosol solvent extraction system

CD:

cyclodextrin

DELOS:

depressurization of an expanded liquid organic solution

HP-β-CD:

hydroxypropyl-β-cyclodextrin

M-β-CD:

methyl-β-cyclodextrin

NPX:

naproxen

PGSS:

particles from gas-saturated solutions

SAA:

supercritical assisted atomization

References

  1. J. Szejtli (1988) Cyclodextrin Technology Kluwer Academic Publishers Dordrecht, The Netherlands

    Google Scholar 

  2. T. Loftsson (2002) ArticleTitleCyclodextrins and the biopharmaceutics classification system of drugs J. Incl. Phenom. Macrocycl. Chem. 44 63–67 Occurrence Handle10.1023/A:1023088423667 Occurrence Handle1:CAS:528:DC%2BD3sXkvFCqtLY%3D

    Article  CAS  Google Scholar 

  3. D. O. Thompson (1997) ArticleTitleCyclodextrins-enabling excipients: their present and future use in pharmaceuticals Crit. Rev. Ther. Drug Carr. Syst. 14 1–104 Occurrence Handle1:CAS:528:DyaK2sXhtlems7g%3D

    CAS  Google Scholar 

  4. J. Szejtli (1994) ArticleTitleMedicinal applications of cyclodextrins Med. Res. Rev. 14 353–386 Occurrence Handle1:CAS:528:DyaK2cXls1ekt7o%3D Occurrence Handle8007740

    CAS  PubMed  Google Scholar 

  5. V. J. Stella R. A. Rajewski (1997) ArticleTitleCyclodextrins: their future in drug formulation and delivery Pharm. Res. 14 556–567 Occurrence Handle10.1023/A:1012136608249 Occurrence Handle1:CAS:528:DyaK2sXjtlSksrg%3D Occurrence Handle9165524

    Article  CAS  PubMed  Google Scholar 

  6. L. Szente J. Szejtli (1999) ArticleTitleHighly soluble cyclodextrin derivatives: chemistry, properties, and trends in development Adv. Drug Deliv. Rev. 36 17–28 Occurrence Handle10.1016/S0169-409X(98)00092-1 Occurrence Handle1:CAS:528:DyaK1MXksFegtw%3D%3D Occurrence Handle10837706

    Article  CAS  PubMed  Google Scholar 

  7. J. Szejtli T. Osa (1996) Cyclodextrins Elsevier Science Ltd. New York

    Google Scholar 

  8. R. A. Rajewski V. J. Stella (1996) ArticleTitlePharmaceutical applications of cyclodextrins. 2. In vivo drug delivery J. Pharmacol. Sci. 85 1143–1169

    Google Scholar 

  9. F. W. H. M. Merkus J. C. Verhoef E. Marttin S. G. Romeijn P. H. M. Kuy Particlevan der W. A. J. J. Hermens N. G. M. Schipper (1999) ArticleTitleCyclodextrins in nasal drug delivery Adv. Drug Deliv. Rev. 36 41–57 Occurrence Handle10.1016/S0169-409X(98)00054-4 Occurrence Handle1:CAS:528:DyaK1MXksFegtQ%3D%3D Occurrence Handle10837708

    Article  CAS  PubMed  Google Scholar 

  10. J. M. C. L. Pinto H. M. C. Marques (1999) ArticleTitleBeclomethasone/cyclodextrin inclusion complex for dry powder inhalation STP Pharma Sci. 9 253–256 Occurrence Handle1:CAS:528:DyaK1MXlsleiu7Y%3D

    CAS  Google Scholar 

  11. A. Clark, M. C. Kuo, and C. Lalor. Phospholipids, cyclodextrins, starch, and cellulose as hygroscopic growth inhibitors in dry powders for pulmonary drug delivery, Inhale Therapeutic Systems, Inc., USA, WO, 2000, pp. 46.

  12. B. Cappello C. Maio ParticleDi M. Iervolino (2002) ArticleTitleInvestigation on the interaction of bendazac with β-, hydroxypropyl-β-, and γ-cyclodextrins J. Incl. Phenom. Macrocycl. Chem. 43 251–257 Occurrence Handle10.1023/A:1021282110659 Occurrence Handle1:CAS:528:DC%2BD3sXksVOgsA%3D%3D

    Article  CAS  Google Scholar 

  13. Y. H. Chou and D. L. Tomasko. Gas crystallization of polymer–pharmaceutical composite particles. The 4th International Symposium on Supercritical Fluids, Vol. A, ISSF, Sendai, Japan, 1997, pp. 55–57.

  14. G. Bettinetti A. Gazzaniga P. Mura F. Giordano M. Setti (1992) ArticleTitleThermal behavior and dissolution properties of naproxen in combinations with chemically modified β-cyclodextrins Drug Dev. Ind. Pharm. 18 39–53 Occurrence Handle1:CAS:528:DyaK38XhtFensbk%3D

    CAS  Google Scholar 

  15. P. Mura G. Bettinetti F. Melani A. Manderioli (1995) ArticleTitleInteraction between naproxen and chemically modified β-cyclodextrins in the liquid and solid state Eur. J. Pharm. Sci. 3 347–355 Occurrence Handle1:CAS:528:DyaK2MXpvVyqtbY%3D Occurrence Handle10.1016/0928-0987(95)00025-X

    Article  CAS  Google Scholar 

  16. M. Charoenchaitrackool F. Dehgani N. R. Foster (2002) ArticleTitleUtilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-β-cyclodextrin Int. J. Pharm. 239 103–112

    Google Scholar 

  17. R. Thiering F. Dehghani A. Dillow N. R. Foster (2000) ArticleTitleSolvent effects on the controlled dense gas precipitation of model proteins J. Chem. Technol. Biotechnol. 75 42–53 Occurrence Handle1:CAS:528:DC%2BD3cXhtVSnsLg%3D

    CAS  Google Scholar 

  18. R. Thiering F. Dehghani A. Dillow N. R. Foster (2000) ArticleTitleThe influence of operating conditions on the dense gas precipitation of model proteins J. Chem. Technol. Biotechnol. 75 29–41 Occurrence Handle1:CAS:528:DC%2BD3cXhtVSnsLs%3D

    CAS  Google Scholar 

  19. G. S. Gurdial. Solubility behaviour of organic compounds in supercritical carbon dioxide, PhD dissertation, School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney, Australia, 1991.

  20. E. Reverchon (1999) ArticleTitleSupercritical antisolvent precipitation of micro- and nano-particles J. Supercrit. Fluids 15 1–21 Occurrence Handle10.1016/S0896-8446(98)00129-6 Occurrence Handle1:CAS:528:DyaK1MXhsVSmu7k%3D

    Article  CAS  Google Scholar 

  21. N. Ventosa S. Sala J. Veciana J. Torres J. Llibre (2001) ArticleTitleDepressurization of an expanded liquid organic solution (DELOS): a new procedure for obtaining submicron- or micron-sized crystalline particles Cryst. Growth Des. 1 299–303 Occurrence Handle10.1021/cg0155090 Occurrence Handle1:CAS:528:DC%2BD3MXkt1yru7Y%3D

    Article  CAS  Google Scholar 

  22. E. Reverchon G. Porta ParticleDella A. Spada A. Antonacci (2004) ArticleTitleGriseofulvin micronization and dissolution rate improvement by supercritical assisted atomization J. Pharm. Pharmacol. 56 1379–1387 Occurrence Handle10.1211/0022357044751 Occurrence Handle1:CAS:528:DC%2BD2cXpvFOltLc%3D Occurrence Handle15525444

    Article  CAS  PubMed  Google Scholar 

  23. E. Reverchon G. Porta ParticleDella (2003) ArticleTitleMicronization of antibiotics by supercritical assisted atomization J. Supercrit. Fluids 26 243–252 Occurrence Handle1:CAS:528:DC%2BD3sXkvVehur0%3D

    CAS  Google Scholar 

  24. J. Fages H. Lochard J.-J. Letourneau M. Sauceau E. Rodier (2004) ArticleTitleParticle generation for pharmaceutical applications using supercritical fluid technology Powder Technol. 141 219–226 Occurrence Handle1:CAS:528:DC%2BD2cXks1Wiu7c%3D

    CAS  Google Scholar 

  25. X. Han, A. R. Baxter, K. W. Koelling, D. L. Tomasko, and L. J. Lee. Influences of solubility and viscosity in the polystyrene/CO2 microcellular foaming extrusion, 60th Annual Technical Conference—Society of Plastics Engineers, San Francisco, CA, 2002, pp. 1910–1914.

  26. A. J. Busby, K. S. Morley, C. J. Roberts, M. S. Watson, P. B. Webb, B. Wong, J. Zhang, G. Kokturk, and S. M. Howdle. Polymers, biomaterials and supercritical fluids, Proceedings of the 8th Meeting on Supercritical Fluids, Vol. 1, Bordeaux, 2002, pp. 115–120.

  27. F. Trotta M. Zanetti G. Camino (2000) ArticleTitleThermal degradation of cyclodextrins Polym. Degrad. Stab. 69 373–379 Occurrence Handle1:CAS:528:DC%2BD3cXlsl2iu7c%3D

    CAS  Google Scholar 

  28. J. Sztatisz, S. Gal, J. Komives, A. Stadler-Szoke, and J. Szejtli. Thermoanalytical investigations on cyclodextrin inclusion compounds, 1st International Symposium on Cyclodextrins, Budapest, 1981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil R. Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mammucari, R., Dehghani, F. & Foster, N.R. Dense Gas Processing of Micron-Sized Drug Formulations Incorporating Hydroxypropylated and Methylated Beta-Cyclodextrin. Pharm Res 23, 429–437 (2006). https://doi.org/10.1007/s11095-005-9094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-9094-7

Key Words

Navigation