Skip to main content
Log in

Comparison of Diafiltration and Tangential Flow Filtration for Purification of Nanoparticle Suspensions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The study reports evaluation of different purification processes for removing surplus surfactant and formulating stable nanoparticle dispersions.

Methods

Nanoparticle formulations prepared from poly(d,l-lactide-co-glycolide) and polyvinyl alcohol (PVA) were purified by a diafiltration centrifugal device (DCD), using 300K and 100K molecular weight cut-off (MWCO) membranes and a tangential flow filtration (TFF) system with a 300K MWCO membrane. The effects of process parameters including MWCO, transmembrane pressure (TMP), and mode of TFF on nanoparticle purification were evaluated, and two purification techniques were compared to the commonly used ultracentrifugation technique.

Results

Both DCD and TFF systems (concentration mode at TMP of 10 psi) with 300K MWCO membrane removed maximal percent PVA from nanoparticle dispersions (89.0 and 90.7%, respectively). T 90, the time taken to remove 90% of PVA in 200-ml sample, however, was considerably different (9.6 and 2.8 h, respectively). Purified nanoparticle dispersions were stable and free of aggregation at ambient conditions over 3 days. This is in contrast to the ultracentrifugation technique, which, although it can yield a highly purified sample, suffers from drawbacks of a level of irreversible nanoparticle aggregation and loss of fine particles in the supernatant during centrifugation.

Conclusions

The TFF, in concentration mode at TMP of 10 psi, is a relatively quick, efficient, and cost-effective technique for purification and concentration of a large nanoparticle batch (≥200 ml). The DCD technique can be an alternative purification method for nanoparticle dispersions of small volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Brannon-Peppas (1995) ArticleTitleRecent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery Int. J. Pharm. 116 1–9 Occurrence Handle10.1016/0378-5173(94)00324-X Occurrence Handle1:CAS:528:DyaK2MXjs1Gjuro%3D

    Article  CAS  Google Scholar 

  2. I. Brigger C. Dubernet P. Couvreur (2002) ArticleTitleNanoparticles in cancer therapy and diagnosis Adv. Drug Deliv. Rev. 54 631–651 Occurrence Handle12204596 Occurrence Handle10.1016/S0169-409X(02)00044-3 Occurrence Handle1:CAS:528:DC%2BD38XmsVeqtrs%3D

    Article  PubMed  CAS  Google Scholar 

  3. S. K. Sahoo V. Labhasetwar (2003) ArticleTitleNanotech approaches to drug delivery and imaging Drug Discov. Today 8 1112–1120 Occurrence Handle14678737 Occurrence Handle10.1016/S1359-6446(03)02903-9 Occurrence Handle1:CAS:528:DC%2BD3sXpvVWkurw%3D

    Article  PubMed  CAS  Google Scholar 

  4. M. L. Hans A. M. Lowman (2002) ArticleTitleBiodegradable nanoparticles for drug delivery and targeting Curr. Opin. Solid State Mater. Sci. 6 319–327 Occurrence Handle1:CAS:528:DC%2BD38XpsFegtLg%3D

    CAS  Google Scholar 

  5. I. Limayem C. Charcosset H. Fessi (2004) ArticleTitlePurification of nanoparticle suspensions by a concentration/diafiltration process Sep. Purif. Technol. 38 1–9 Occurrence Handle10.1016/j.seppur.2003.10.002 Occurrence Handle1:CAS:528:DC%2BD2cXks1Kiu7Y%3D

    Article  CAS  Google Scholar 

  6. T. Govender S. Stolnik M. C. Garnett L. Illum S. S. Davis (1999) ArticleTitlePLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug J. Control. Release 57 171–185 Occurrence Handle9971898 Occurrence Handle10.1016/S0168-3659(98)00116-3 Occurrence Handle1:CAS:528:DyaK1MXovFajtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  7. H. Murakami M. Kobayashi H. Takeuchi Y. Kawashima (2000) ArticleTitleFurther application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles Powder Technol. 107 137–143 Occurrence Handle1:CAS:528:DC%2BD3cXksl2nsg%3D%3D

    CAS  Google Scholar 

  8. P. Calvo C. Remunan-Lopez J. L. Vila-Jato M. J. Alonso (1997) ArticleTitleChitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines Pharm. Res. 14 1431–1436 Occurrence Handle9358557 Occurrence Handle10.1023/A:1012128907225 Occurrence Handle1:CAS:528:DyaK2sXntFeht7g%3D

    Article  PubMed  CAS  Google Scholar 

  9. S. K. Sahoo J. Panyam S. Prabha V. Labhasetwar (2002) ArticleTitleResidual polyvinyl alcohol associated with poly (dl,-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake J. Control. Release 82 105–114 Occurrence Handle12106981 Occurrence Handle10.1016/S0168-3659(02)00127-X Occurrence Handle1:CAS:528:DC%2BD38XltVOlur0%3D

    Article  PubMed  CAS  Google Scholar 

  10. C. A. Nguyen E. Allemann G. Schwach E. Doelker R. Gurny (2003) ArticleTitleSynthesis of a novel fluorescent poly (dl,-lactide) end-capped with 1-pyrenebutanol used for the preparation of nanoparticles Eur. J. Pharm. Sci. 20 217–222 Occurrence Handle14550888 Occurrence Handle1:CAS:528:DC%2BD3sXnvVOitL8%3D Occurrence Handle10.1016/S0928-0987(03)00196-9

    Article  PubMed  CAS  Google Scholar 

  11. H.-Y. Kwon J.-Y. Lee S.-W. Choi Y. Jang J.-H. Kim (2001) ArticleTitlePreparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method Colloids Surf. A Physicochem. Eng. Asp. 182 123–130 Occurrence Handle10.1016/S0927-7757(00)00825-6 Occurrence Handle1:CAS:528:DC%2BD3MXitF2mtb0%3D

    Article  CAS  Google Scholar 

  12. P. Beck D. Scherer J. Kreuter (1990) ArticleTitleSeparation of drug-loaded nanoparticles from free drug by gel filtration J. Microencapsul. 7 491–496 Occurrence Handle2266474 Occurrence Handle1:CAS:528:DyaK3MXhtVyqsrw%3D

    PubMed  CAS  Google Scholar 

  13. J. Zahka L. Mir (1977) ArticleTitleUltrafiltration of latex emulsions Chem. Eng. Prog. 73 53–55 Occurrence Handle1:CAS:528:DyaE1cXmt1ymsA%3D%3D

    CAS  Google Scholar 

  14. G. Tishchenko K. Luetzow J. Schauer W. Albrecht M. Bleha (2001) ArticleTitlePurification of polymer nanoparticles by diafiltration with polysulfone/hydrophilic polymer blend membranes Sep. Purif. Technol. 22–23 403–415

    Google Scholar 

  15. G. Tishchenko R. Hilke W. Albrecht J. Schauer K. Luetzow Z. Pientka M. Bleha (2003) ArticleTitleUltrafiltration and microfiltration membranes in latex purification by diafiltration with suction Sep. Purif. Technol. 30 57–68 Occurrence Handle10.1016/S1383-5866(02)00120-X Occurrence Handle1:CAS:528:DC%2BD38XoslKqur4%3D

    Article  CAS  Google Scholar 

  16. D. Quintanar-Guerrero A. Ganem-Quintanar E. Allemann H. Fessi E. Doelker (1998) ArticleTitleInfluence of the stabilizer coating layer on the purification and freeze-drying of poly(d,l-lactic acid) nanoparticles prepared by an emulsion–diffusion technique J. Microencapsul. 15 107–119 Occurrence Handle9463812 Occurrence Handle1:CAS:528:DyaK1cXhs1Klu7s%3D

    PubMed  CAS  Google Scholar 

  17. U. B. Kompella N. Bandi S. P. Ayalasomayajula (2001) ArticleTitlePoly (lactic acid) nanoparticles for sustained release of budesonide Drug Deliv. Technol. 1 1–7

    Google Scholar 

  18. S. Prabha W.-Z. Zhou J. Panyam V. Labhasetwar (2002) ArticleTitleSize-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles Int. J. Pharm. 244 105–115 Occurrence Handle12204570 Occurrence Handle10.1016/S0378-5173(02)00315-0 Occurrence Handle1:CAS:528:DC%2BD38XmsVahsrw%3D

    Article  PubMed  CAS  Google Scholar 

  19. S. K. Lee (2003) Incorporation of DEET into PLGA nano/microparticles Pharmacy Curtin University of Technology Perth

    Google Scholar 

  20. E. Chiellini L. M. Orsini R. Solaro (2003) ArticleTitlePolymeric nanoparticles based on polylactide and related co-polymers Macromol. Symp. 197 345–354 Occurrence Handle1:CAS:528:DC%2BD3sXnsVGgtLw%3D

    CAS  Google Scholar 

  21. L. Schwartz K. Seeley (2002) Introduction to Tangential Flow Filtration for Laboratory and Process Development Applications Pall Life Sciences Ann Arbor 1–12

    Google Scholar 

  22. Y. Kawashima H. Yamamoto H. Takeuchi S. Fujioka T. Hino (1999) ArticleTitlePulmonary delivery of insulin with nebulized-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect J. Control. Release 62 279–287 Occurrence Handle10518661 Occurrence Handle10.1016/S0168-3659(99)00048-6 Occurrence Handle1:CAS:528:DyaK1MXmsV2qs7c%3D

    Article  PubMed  CAS  Google Scholar 

  23. H. Murakami M. Kobayashi H. Takeuchi Y. Kawashima (1999) ArticleTitlePreparation of poly(-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method Int. J. Pharm. 187 143–152 Occurrence Handle10502620 Occurrence Handle10.1016/S0378-5173(99)00187-8 Occurrence Handle1:CAS:528:DyaK1MXmt1Sgsb4%3D

    Article  PubMed  CAS  Google Scholar 

  24. L. Schwartz (2003) Diafiltration: A Fast, Efficient Method for Desalting, or Buffer Exchange of Biological Samples Pall Life Sciences Ann Arbor 1–6

    Google Scholar 

  25. J. H. Finely (1961) ArticleTitleSpectrophotometric determination of polyvinyl alcohol in paper coatings Anal. Chem. 33 1925–1927

    Google Scholar 

  26. J. M. Jenco T. Hu L. Schwartz K. Seeley (2003) The Partnership of the Minimate™ TFF Capsule with Liquid Chromatography Systems Facilitates Lab-Scale Purifications and Process Development Through In-Line Monitoring Pall Life Sciences Ann Arbor

    Google Scholar 

  27. B. Briscoe P. Luckham S. Zhu (2000) ArticleTitleThe effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions Polymer 41 3851–3860 Occurrence Handle10.1016/S0032-3861(99)00550-9 Occurrence Handle1:CAS:528:DC%2BD3cXhsFKltL4%3D

    Article  CAS  Google Scholar 

  28. P. I. Zubov (1965) ArticleTitleStudies of structure formation in poly(vinyl alcohol) solutions J. Polym. Sci. 3 423–431 Occurrence Handle1:CAS:528:DyaF2MXnsVKgug%3D%3D

    CAS  Google Scholar 

  29. B. Keskinler E. Yildiz E. Erhan M. Dogru Y. K. Bayhan G. Akay (2004) ArticleTitleCrossflow microfiltration of low concentration-nonliving yeast suspensions J. Membr. Sci. 233 59–69 Occurrence Handle10.1016/j.memsci.2003.12.014 Occurrence Handle1:CAS:528:DC%2BD2cXislOqtb8%3D

    Article  CAS  Google Scholar 

  30. H. Li A. G. Fane H. G. L. Coster S. Vigneswaran (1998) ArticleTitleDirect observation of particle deposition on the membrane surface during crossflow microfiltration J. Membr. Sci. 149 83–97 Occurrence Handle1:CAS:528:DyaK1cXmvFWnsL4%3D

    CAS  Google Scholar 

  31. J.-S. Park H.-J. Lee S.-J. Choi K. E. Geckeler J. Cho S.-H. Moon (2003) ArticleTitleFouling mitigation of anion exchange membrane by zeta potential control J. Colloids Interface Sci. 259 293–300 Occurrence Handle10.1016/S0021-9797(02)00095-4 Occurrence Handle1:CAS:528:DC%2BD3sXit1Cktr0%3D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.D. wishes to acknowledge his Ph.D. scholarship provided by Australian Postgraduate Award through Curtin University of Technology, Perth, Western Australia. FESEM was conducted in the Department of Chemical and Biomolecular Engineering, National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalwadi, G., Benson, H.A.E. & Chen, Y. Comparison of Diafiltration and Tangential Flow Filtration for Purification of Nanoparticle Suspensions. Pharm Res 22, 2152–2162 (2005). https://doi.org/10.1007/s11095-005-7781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-7781-z

Key Words

Navigation