Skip to main content
Log in

Bitterness Suppression with Zinc Sulfate and Na-Cyclamate: A Model of Combined Peripheral and Central Neural Approaches to Flavor Modification

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Zinc sulfate is known to inhibit the bitterness of the antimalarial agent quinine [R. S. J. Keast. The effect of zinc on human taste perception. J. Food Sci. 68:1871–1877 (2003)]. In the present work, we investigated whether zinc sulfate would inhibit other bitter-tasting compounds and pharmaceuticals. The utility of zinc as a general bitterness inhibitor is compromised, however, by the fact that it is also a good sweetness inhibitor [R. S. J. Keast, T. Canty, and P. A. S. Breslin. Oral zinc sulfate solutions inhibit sweet taste perception. Chem. Senses 29:513–521 (2004)] and would interfere with the taste of complex formulations. Yet, zinc sulfate does not inhibit the sweetener Na-cyclamate. Thus, we determined whether a mixture of zinc sulfate and Na-cyclamate would be a particularly effective combination for bitterness inhibition (Zn) and masking (cyclamate).

Method

We used human taste psychophysical procedures with chemical solutions to assess bitterness blocking.

Results

Zinc sulfate significantly inhibited the bitterness of quinine–HCl, Tetralone, and denatonium benzoate (DB) (p < 0.05), but had no significant effect on the bitterness of sucrose octa-acetate, pseudoephedrine (PSE), and dextromethorphan. A second experiment examined the influence of zinc sulfate on bittersweet mixtures. The bitter compounds were DB and PSE, and the sweeteners were sucrose (inhibited by 25 mM zinc sulfate) and Na-cyclamate (not inhibited by zinc sulfate). The combination of zinc sulfate and Na-cyclamate most effectively inhibited DB bitterness (86%) (p < 0.0016), whereas the mixture's inhibition of PSE bitterness was not different from that of Na-cyclamate alone.

Conclusion

A combination of Na-cyclamate and zinc sulfate was most effective at inhibiting bitterness. Thus, the combined use of peripheral oral and central cognitive bitterness reduction strategies should be particularly effective for improving the flavor profile of bitter-tasting foods and pharmaceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DB:

denatonium benzoate

DEX:

dextromethorphan

di:

deionized

gLMS:

general labeled magnitude scale

Mg(OAc)2:

magnesium acetate

MgSO4:

magnesium sulfate

NaOAc:

sodium acetate

PSE:

pseudoephedrine

QHCl:

Quinine-HCl

SOA:

sucrose octaacetate

TET:

Tetralone

ZnSO4:

zinc sulfate

References

  1. R. S. J. Keast (2003) ArticleTitleThe effect of zinc on human taste perception J. Food Sci. 68 1871–1877

    Google Scholar 

  2. R. S. J. Keast T. Canty P. A. S. Breslin (2004) ArticleTitleOral zinc sulfate solutions inhibit sweet taste perception Chem. Senses 29 513–521 Occurrence Handle10.1093/chemse/bjh053 Occurrence Handle15269123

    Article  PubMed  Google Scholar 

  3. E. Adler M. Hoon K. Mueller J. Chandrashekar N. Ryba C. Zuker (2000) ArticleTitleA novel family of mammalian taste receptors Cell 100 693–702 Occurrence Handle10.1016/S0092-8674(00)80705-9 Occurrence Handle10761934

    Article  PubMed  Google Scholar 

  4. J. Chandrashekar K. Mueller M. Hoon E. Adler L. Feng W. Guo C. Zuker N. Ryba (2000) ArticleTitleT2Rs function as bitter taste receptors Cell 100 703–711 Occurrence Handle10.1016/S0092-8674(00)80706-0 Occurrence Handle10761935

    Article  PubMed  Google Scholar 

  5. G. Wong K. Gannon R. Margolskee (1996) ArticleTitleTransduction of bitter sweet taste by gustducin Nature 381 796–800 Occurrence Handle10.1038/381796a0 Occurrence Handle8657284

    Article  PubMed  Google Scholar 

  6. S. Kinnamon R. Margolskee (1996) ArticleTitleMechanisms of taste transduction Curr. Opin. Neurobiol. 6 506–513 Occurrence Handle10.1016/S0959-4388(96)80057-2 Occurrence Handle8794107

    Article  PubMed  Google Scholar 

  7. L. Huang Y. Shanker J. Dubauskaite J. Zheng W. Yan S. Rosenzweig A. Spielman M. Max R. Margolskee (1999) ArticleTitleGgamma13 colocalizes with gustducin in taste receptor cells mediates IP3 responses to bitter denatonium Nat. Neurosci. 2 1055–1062 Occurrence Handle10.1038/15981 Occurrence Handle10570481

    Article  PubMed  Google Scholar 

  8. P. Rossler C. Kroner J. Freitag J. Noe H. Breer (1998) ArticleTitleIdentification of a phospholipase C beta sub-type in rat taste cells Eur. J. Cell Biol. 77 253–261 Occurrence Handle9860142

    PubMed  Google Scholar 

  9. A. Spielman T. Huque G. Whitney J. G. Brand (1992) The diversity of bitter taste transduction mechanisms D. P. Corey S. D. Roper (Eds) Sensory Transduction Rockefeller Press New York 307–324

    Google Scholar 

  10. J. H. A. Kroeze L. M. Bartoshuk (1985) ArticleTitleBitterness suppression as revealed by split-tongue taste stimulation in humans Physiol. Behav. 35 779–783 Occurrence Handle10.1016/0031-9384(85)90412-3 Occurrence Handle4080842

    Article  PubMed  Google Scholar 

  11. L. Bartoshuk and J. P. Seibyl. Suppression of QHCL in mixtures: possible mechanisms, AChems, Sarasota 4th Annual Meeting, 1982.

  12. P. Breslin G. Beauchamp (1995) ArticleTitleSuppression of bitterness by sodium: variation among bitter taste stimuli Chem. Senses 20 609–623 Occurrence Handle8788095

    PubMed  Google Scholar 

  13. R. S. J. Keast P. A. S. Breslin (2002) ArticleTitleModifying the bitterness of selected oral pharmaceuticals with cation anion series of salts Pharm. Res. 11 1020–1027

    Google Scholar 

  14. R. S. J. Keast P. A. S. Breslin (2002) ArticleTitleCross adaptation bitterness inhibition of l-tryptophan, l-phenylalanine urea: further support for shared peripheral physiology Chem. Senses 27 123–131 Occurrence Handle10.1093/chemse/27.2.123 Occurrence Handle11839610

    Article  PubMed  Google Scholar 

  15. R. M. Pangborn (1960) ArticleTitleTaste interrelationships Food Res. 25 245–256

    Google Scholar 

  16. C. Frederickson A. Bush (2001) ArticleTitleSynaptically released zinc: physiological functions pathological effects BioMetals 14 353–366 Occurrence Handle10.1023/A:1012934207456 Occurrence Handle11831465

    Article  PubMed  Google Scholar 

  17. D. Christianson (1991) ArticleTitleStructural biology of zinc Adv. Protein Chem. 42 281–355 Occurrence Handle1793007

    PubMed  Google Scholar 

  18. G. Swaminath T. Lee B. Kobilka (2003) ArticleTitleIdentification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor J. Biol. Chem. 278 352–356 Occurrence Handle10.1074/jbc.M206424200 Occurrence Handle12409304

    Article  PubMed  Google Scholar 

  19. F. Zheng M. Gingrich S. Traynelis P. Conn (1998) ArticleTitleTyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition Nat. Neurosci. 1 185–191 Occurrence Handle10.1038/634 Occurrence Handle10195142

    Article  PubMed  Google Scholar 

  20. B. Green P. Dalton B. Cowart G. Shaffer K. Rankin J. Higgins (1996) ArticleTitleEvaluating the ‘labeled magnitude scale’ for measuring sensations of taste smell Chem. Senses 21 323–334 Occurrence Handle8670711

    PubMed  Google Scholar 

  21. B. G. Green G. S. Shaffer M. M. Gilmore (1993) ArticleTitleDerivation evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties Chem. Senses 18 683–702

    Google Scholar 

  22. L. Bartoshuk (2000) ArticleTitleComparing sensory experience across individuals: recent psychophysical advances illuminate genetic variation in taste perception Chem. Senses 25 447–460 Occurrence Handle10.1093/chemse/25.4.447 Occurrence Handle10944509

    Article  PubMed  Google Scholar 

  23. C. Clark H. Lawless (1994) ArticleTitleLimiting response alternatives in time-intensity scaling: an examination of the halo-dumping effect Chem. Senses 19 583–594 Occurrence Handle7735838

    PubMed  Google Scholar 

  24. R. S. J. Keast P. A. S. Breslin (2003) ArticleTitleAn overview of binary taste–taste interactions Food Qual. Prefer. 14 111–124 Occurrence Handle10.1016/S0950-3293(02)00110-6

    Article  Google Scholar 

  25. P. Breslin G. Beauchamp (1997) ArticleTitleSalt enhances flavour by suppressing bitterness Nature 387 563 Occurrence Handle10.1038/42388

    Article  Google Scholar 

  26. S. Schiffman B. Booth E. Sattely-Miller B. Graham K. Gibes (1999) ArticleTitleSelective inhibition of sweetness by the sodium salt of +/−2-(4-methoxyphenoxy)propanoic acid Chem. Senses 24 439–447 Occurrence Handle10.1093/chemse/24.4.439 Occurrence Handle10480680

    Article  PubMed  Google Scholar 

  27. D. Hornung M. Enns (1994) The synergistic action of the taste smell components of flavour G. Birch G. Campbell-Platt (Eds) Synergy Intercept Andover 145–154

    Google Scholar 

  28. L. Bartoshuk (1975) ArticleTitleTaste mixtures: is mixture suppression related to compression Physiol. Behav. 14 643–649 Occurrence Handle10.1016/0031-9384(75)90193-6 Occurrence Handle1135328

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Gary Beauchamp for his comments on a draft of this manuscript. This research was supported by grants from NIH DC02995 to P.A.S.B. and NIH DC06186 to R.S.J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell S. J. Keast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keast, R.S.J., Breslin, P.A.S. Bitterness Suppression with Zinc Sulfate and Na-Cyclamate: A Model of Combined Peripheral and Central Neural Approaches to Flavor Modification. Pharm Res 22, 1970–1977 (2005). https://doi.org/10.1007/s11095-005-6136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-6136-0

Key Words

Navigation