Skip to main content
Log in

Interaction of Polysorbate 80 with Erythropoietin: A Case Study in Protein–Surfactant Interactions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The cause of antibody positive pure red cell aplasia associated with the subcutaneous administration of EPREX® to patients with chronic kidney failure has been determined to be due to the leaching of weakly adjuvant compounds from the uncoated rubber stoppers that were formerly used in prefilled syringes. Other researchers have suggested that polysorbate 80 micelles containing erythropoietin may be a causative factor. The purpose of this work was to repeat previously published studies in a more controlled manner and to define the precise nature of the interactions between polysorbate 80 and erythropoietin.

Methods

The contents of EPREX® prefilled syringes and laboratory-prepared, well-characterized formulations of EPREX® were analyzed by size exclusion chromatography. Fractions were analyzed for the presence of erythropoietin by ELISA. EPREX® formulations prepared with increasing amounts of polysorbate 80 were analyzed by light scattering.

Results

Well-controlled chromatographic studies showed that when EPREX® formulations containing no aggregate were analyzed by high-performance liquid chromatography, erythropoietin monomer could not be detected under the polysorbate 80 peak. Dimer and oligomers of erythropoietin coeluted under the polysorbate 80 peak as the molecular weights overlapped on the size exclusion chromatogram. Solution light scattering indicated that polysorbate 80 associates with erythropoietin in a defined stoichiometric ratio of 1:12.

Conclusions

Based on controlled studies, previous results suggesting that EPREX® contains micelle-associated erythropoietin were incorrect. As with other surfactants and proteins, polysorbate 80 associates with erythropoietin in a defined stoichiometric ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Casadevall J. Nataf B. Viron A. Kolta J.-J. Kiladjian P. Martin-Dupont P. Michaud T. Papo V. Ugo I. Teyssandier B. Varet P. Mayeux (2002) ArticleTitlePure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin New Engl. J. Med. 346 469–475

    Google Scholar 

  2. R. Peces M. de la Torre R. Alcázarh J. M. Urra (1996) ArticleTitleAntibodies against recombinant human erythropoietin in a patient with erythropoietin-resistant anemia New Engl. J. Med. 335 523–524

    Google Scholar 

  3. S. S. Prabhakar T. Muhlfelder (1997) ArticleTitleAntibodies to recombinant human erythropoietin causing pure red cell aplasia Clin. Nephrol. 47 331–335

    Google Scholar 

  4. H. Bergrem B. G. Danielson K. U. Eckardt A. Kurtz M. Stridsberg (1993) ArticleTitleA case of antierythropoietin antibodies following recombinant human erythropoietin treatment Molecular Physiol. Clin. Appl. 265 273

    Google Scholar 

  5. B. Sharma F. Bader T. Templeman P. Lisi M. Ryan G. A. Heavner (2004) ArticleTitleTechnical investigations into the cause of the increased incidence of antibody-mediated pure red cell aplasia associated with EPREX® Eur. J. Hosp. Pharm. 5 86–91

    Google Scholar 

  6. K. Boven S. Stryker J. Knight A. Thomas M. Regenmortel Particlevan D. M. Kemeny D. Power J. Rossert N. Casadevall (2005) ArticleTitleThe increased incidence of pure red cell aplasia with an EPREX® formulation in uncoated rubber stopper syringes Kidney International 67 2346–2353

    Google Scholar 

  7. S. Hermeling H. Schellekens D. J. A. Crommelin W. Jiskoot (2003) ArticleTitleMicelle-associated protein in epoetin formulations: a risk factor for immunogenicity? Pharm. Res. 20 1903–1907

    Google Scholar 

  8. K.-J. Tiefenbach H. Durchschlag R. Jaenicke (1999) ArticleTitleSpectroscopic and hydrodynamic investigations of nonionic and zwitterionic detergents Prog. Colloid Polym. Sci. 113 135–140

    Google Scholar 

  9. A. M. DePaolis J. V. Advani B. G. Sharma (1995) ArticleTitleCharacterization of erythropoietin dimerization J. Pharm. Sci. 84 1280–1284

    Google Scholar 

  10. P. Deby T. Strickland M. Rohde K. Stoney R. Rush (1996) ArticleTitleIdentification of residues involved in homodimer formation of recombinant human erythropoietin Int. J. Pept. Protein Res. 47 201–208

    Google Scholar 

  11. B. Kerwin, S. Deechongkit, S. Park, J. Kim, and H. Burnett. Effects of polysorbates 20 and 80 on the structure and stability of darbepoetin alfa and epoetin alfa. In Abstracts, XLI Congress of the European Dialysis and Transplant Association, Lisbon, Portugal, 2004.

  12. N. Funasaki (1993) ArticleTitleGel filtration chromatographic study on the self-association of surfactants and related compounds Adv. Colloid Interface Sci. 43 87–136

    Google Scholar 

  13. K.-J. Tiefenbach H. Durchschlag R. Jaenicke (1999) ArticleTitleSpectroscopic and hydrodynamic investigations of nonionic and zwitterionic detergents Prog. Colloid Polym. Sci. 113 135–140

    Google Scholar 

  14. P. Schmidt H. Sucker (1970) ArticleTitleBestimmung des Micellmolekulargewichts von Tensiden mit der Gel-Chromatographie Fresenius Z. Anal. Chem. 250 384–385

    Google Scholar 

  15. L. S. C. Wan P. F. S. Lee (1974) ArticleTitleCMC of polysorbates J. Pharm. Sci. 63 136–137

    Google Scholar 

  16. R. Pitt-Rivers R. S. A. Impiombato (1968) ArticleTitleBinding of sodium dodecyl sulfate to various proteins Biochem. J. 109 825–830

    Google Scholar 

  17. N. B. Bam T. W. Randolph J. L. Cleland (1995) ArticleTitleStability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique Pharm. Res. 12 2–11

    Google Scholar 

  18. C. Hilty G. Wider C. Fernández K. Wüthrich (2004) ArticleTitleMembrane protein–lipid interactions in mixed micelles studies by NMR spectroscopy with the use of paramagnetic reagents ChemBioChem 5 467–473

    Google Scholar 

  19. G. Wider K. H. Lee K. Wüthrich (1982) ArticleTitleSequential resonance assignments in protein 1H nuclear magnetic resonance spectra, glucagon bound to perdeuterated dodecylphosphocholine micelles J. Mol. Biol. 155 367–388

    Google Scholar 

  20. J. S. W. Holtz J. H. Holtz Z. Chi S. A. Asher (1999) ArticleTitleUltraviolet Raman examination of the environmental dependence of Bombolitin I and bombolitin III secondary structure Biophys. J. 76 3227–3234

    Google Scholar 

  21. J. Lauterwein C. Bösch L. R. Brown K. Wüthrich (1979) ArticleTitlePhysicochemical studies of the protein–lipid interactions in melittin-containing micelles Biochim. Biophys. Acta 556 244–264

    Google Scholar 

  22. K. H. Lee J. E. Fitton K. Wüthrich (1987) ArticleTitleNuclear magnetic resonance investigation of the conformation of d-haemolysin bound to dodecylphosphocholine micelles Biochim. Biophys. Acta 911 144–153

    Google Scholar 

  23. A. Arora L. K. Tamm (2001) ArticleTitleBiophysical approaches to membrane protein structure determination Curr. Opin. Struct. Biol. 11 540–547

    Google Scholar 

  24. W. L. Dean (1982) ArticleTitleCa2+-ATPase–detergent interactions Biophys. J. 37 56–57

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the excellent technical assistance provided by Patricia Brennan, Wise Lumax, Ken Bui, Alexandra Marin, and Samantha Ranaweera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Heavner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalobos, A.P., Gunturi, S.R. & Heavner, G.A. Interaction of Polysorbate 80 with Erythropoietin: A Case Study in Protein–Surfactant Interactions. Pharm Res 22, 1186–1194 (2005). https://doi.org/10.1007/s11095-005-5356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-5356-7

Key Words

Navigation