Skip to main content

Advertisement

Log in

Stochastic Differential Equations in NONMEM®: Implementation, Application, and Comparison with Ordinary Differential Equations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling.

Methods

The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM® for parameter estimation in SDE models.

Results

Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix.

Conclusions

The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EKF:

Extended Kalman Filter

FOCE:

first-order conditional estimation

GnRH:

gonadotropin releasing hormone

LLOQ:

lower limit of quantification

ODE:

ordinary differential equation

PK/PD:

pharmacokinetics/pharmacodynamics

RSE:

relative standard error

SC:

subcutaneous

SDE:

stochastic differential equation. Variables:

e :

measurement error

ε:

residual error

η :

inter-individual variability

K :

Kalman gain

Ω:

inter-individual covariance

P :

state covariance

φ :

individual parameter

R :

output prediction covariance

Σ:

measurement error covariance

σ w :

diffusion term

t :

time

θ :

population mean parameter

w :

Wiener process

x :

state variable

y :

measurement

References

  1. R. Jelliffe A. Schumitzky M. Guilder ParticleVan (2000) ArticleTitlePopulation pharmacokinetics/pharmacodynamics modeling: parametric and nonparametric methods Ther. Drug Monit. 22 IssueID17–18 354–365 Occurrence Handle10.1097/00007691-200006000-00019 Occurrence Handle10850405

    Article  PubMed  Google Scholar 

  2. J. K. Lindsey B. Jones P. Jarvis (2001) ArticleTitleSome statistical issues in modelling pharmacokinetic data Stat. Med. 20 2775–2783 Occurrence Handle10.1002/sim.742 Occurrence Handle11523082

    Article  PubMed  Google Scholar 

  3. M. O. Karlsson S. L. Beal L. B. Sheiner (1995) ArticleTitleThree new residual error models for population PK/PD analyses J. Pharmacokinet. Biopharm. 23 651–672 Occurrence Handle8733951

    PubMed  Google Scholar 

  4. C. W. Tornøe J. L. Jacobsen H. Madsen (2004) ArticleTitleGrey-box pharmacokinetic/pharmacodynamic modelling of a euglycaemic clamp study J. Math. Biol. 48 591–604 Occurrence Handle10.1007/s00285-003-0257-z Occurrence Handle15164224

    Article  PubMed  Google Scholar 

  5. C. W. Tornøe J. L. Jacobsen O. Pedersen T. Hansen H. Madsen (2004) ArticleTitleGrey-box modelling of pharmacokinetic/pharmacodynamic systems J. Pharmacokinet. Pharmacodyn. 31 401–417 Occurrence Handle10.1007/s10928-004-8323-8 Occurrence Handle15669774

    Article  PubMed  Google Scholar 

  6. N. R. Kristensen H. Madsen S. B. Jørgensen (2004) ArticleTitleParameter estimation in stochastic grey-box models Automatica 40 225–237 Occurrence Handle10.1016/j.automatica.2003.10.001 Occurrence HandleMR2145299

    Article  MathSciNet  Google Scholar 

  7. R. V. Overgaard, E. N. Jonsson, C. W. Tornøe, and H. Madsen. Non-linear mixed-effects models with stochastic differential equations. Implementation of an estimation algorithm. J. Pharmacokinet. Pharmacodyn. In press (2005).

  8. N. R. Kristensen H. Madsen S. B. Jørgensen (2004) ArticleTitleA method for systematic improvement of stochastic grey-box models Comput. Chem. Eng. 28 1431–1449 Occurrence Handle10.1016/j.compchemeng.2004.08.004

    Article  Google Scholar 

  9. S. L. Beal and L. B. Sheiner (Eds.). NONMEM® Users Guides. NONMEM Project Group, University of California, San Francisco, 1994.

  10. A. H. Jazwinski (1970) Stochastic Processes and Filtering Theory Academic Press New York

    Google Scholar 

  11. R. E. Kalman (1960) ArticleTitleA new approach to linear filtering and prediction problems Trans. ASME, Ser. D J. Basic Eng. 82 35–45

    Google Scholar 

  12. R. E. Kalman R. S. Bucy (1961) ArticleTitleNew results in linear filtering and prediction theory Trans. ASME, Ser. D J. Basic Eng. 83 95–108

    Google Scholar 

  13. P. S. Maybeck (1979) Stochastic Models, Estimation, and Control Academic Press New York

    Google Scholar 

  14. V. P. Shah K. K. Midha S. Dighe I. J. McGilveray J. P. Skelly A. Yacobi T. Layloff C. T. Viswanathan C. E. Cook R. D. McDowall (1991) ArticleTitleAnalytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report Eur. J. Drug Metab. Pharmacokinet. 16 IssueID4 249–255 Occurrence Handle1823867

    PubMed  Google Scholar 

  15. C. W. Tornøe H. Agersø H. A. Nielsen H. Madsen E. N. Jonsson (2004) ArticleTitlePopulation pharmacokinetic modeling of a subcutaneous depot for GnRH antagonist degarelix Pharm. Res. 21 574–584 Occurrence Handle10.1023/B:PHAM.0000022403.60314.51 Occurrence Handle15139513

    Article  PubMed  Google Scholar 

  16. H. Agersø W. Koechling M. Knutsson R. Hjortkjær M. O. Karlsson (2003) ArticleTitleThe dosing solution influence on the pharmacokinetics of degarelix, a new GnRH antagonist, after s.c. administration to beagle dogs Eur. J. Pharm. Sci. 20 335–340 Occurrence Handle10.1016/j.ejps.2003.08.001 Occurrence Handle14592699

    Article  PubMed  Google Scholar 

  17. D. S. Bayard R. W. Jelliffe (2004) ArticleTitleA Bayesian approach to tracking patients having changing pharmacokinetic parameters J. Pharmacokinet. Pharmacodyn. 31 75–107 Occurrence Handle10.1023/B:JOPA.0000029490.76908.0c Occurrence Handle15346853

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the help of Professor Stuart Beal (UCSF), who instructed us on how to implement the EKF algorithm in NONMEM. This work was financially supported by Ferring Pharmaceuticals A/S and Center for Information Technology, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoffer W. Tornøe.

Appendix 1

Appendix 1

NONMEM SDE Control Stream (See Table I)

1

$PROBLEM SDE 1-COMP MODEL WITH 2 ABS COMPONENT

65

A7 = A7

$INPUT ID HOUR TIME AMT CMT DV EVID MDV

A8 = A8

$DATA SDE.dta IGNORE = @

A9 = A9

$SUBROUTINE ADVANCE TOL 6 DP

ENDIF

5

$MODEL COMP = (ABS1) COMP = (CENT)

; EKF state update equations

COMP = (P11) COMP = (P12) COMP = (P13)

70

IF(EVID.EQ.3) THEN

COMP = (P22) COMP = (P23) COMP = (P33)

;Output cov. R_j∣j−1 = C P_j∣j−1C^T + Sig Sig^T

RVAR = A9/(A3*A3) + SIG**2

$THETA (0,5.50)(0,100)(0,30.0)(0,900)(0,0.10,1)

;Kalman Gain K_j = P_j∣j−1 C^T R_j∣j−1^−1

10

 (0,0.70,1)(0.0.20)(0,1)(0,250)(0,1)

K1 = A6/(A3*RVAR)

$OMEGA 0.25 0.25 0.25 0.25

75

K2 = A8/(A3*RVAR)

$Sigma 1 FIX

K3 = A9/(A3*RVAR)

;State update eq. x_j∣j = x_j∣−1+K_j (y_j−y_j∣j−1)

$PK

A1UP = A1+K1*(OBS-LOG(A3/V1))

15

 CL = THETA(1)

A2UP = A2+K2*(OBS-LOG(A3/V1))

V1 = THETA(2)

80

A3UP = A3+K3*(OBS-LOG(A3/V1))

HL1 = THETA(3)*EXP(ETA(1))

;State cov. update eq.P_j∣j = P_j∣j−1K_j R_j∣j−1 K_j^T

HL2 = THETA(4)*EXP(ETA(2)) + HL1

P1UP = A4-K1*RVAR*K1

 KA1 = LOG(2)/HL1

P2UP = A5-K1*RVAR*K2

20

KA2 = LOG(2)/HL2

P3UP = A6-K1*RVAR*K3

TFR = THETA(5)

85

P4UP = A7-K2*RVAR*K2

 RHO = LOG(TFR/(1-TFR))

P5UP = A8-K2*RVAR*K3

 FRAC = EXP(RHO+ETA(3))/(1+EXP(RHO+ETA(3)))

P6UP = A9-K3*RVAR*K3

TBIO = 1

ENDIF

25

 IF(CONC. EQ. 20)TBIO = THETA(6)

;Update states

BIO = TBIO8EXP(ETA(4))

90

IF (A_0FLG.EQ. 1) THEN

SIG = THETA (7)

A_0(1)A1UP

SGW1 = THETA (8)

A_0 (2) = A2UP

SGW2 = THETA (9)

A_0 (3) = A3UP

30

SGW3 = THETA (10)

A_0 (4) = P1UP

F1 = FRAC*BIO

95

A_0 (5) = P2UP

F2 = (1-FRAC)*BIO

A_0 (6) = P3UP

;Initialize state and state covariance equations

A_0 (7) = P4UP

IF (NEWIND.NE.2) THEN

A_0 (8) = P5UP

35

AHT1 = 0

A_0 (9) = P6UP

AHT2 = 0

100

ENDIF

AHT3 = 0

 

PHT1 = 0

$DES

PHT2 = 0

;State predicton eq. dx_t∣j/dt = g(x_t∣j,d,phi)

40

PHT3 = 0

DADT(1) = −KA1*A(1)

PHT4 = 0

105

DADT(2) = −KA2*A(2)

PHT5 = 0

DADT(3) = −KA1*A(1) + KA2*A(2) - CL/V1*A(3)

PHT6 = 0

;State cov. dP_t∣j/dt = A_t P_t∣j+P_t∣j A_t^T+SGW SGW^T SGW^T

ENDIF

DADT (4) = −2*KA1*A(4) + SGW1*SGW1

45

;Store observations for EKF update

DADT (5) = −(KA1+KA2)*A(5)

IF (EVID.EQ.0) OBS = DV

110

DADT (6) = −(KA1+CL/V1)*A(6) + KA1*A(4) + KA2*A(5)

;Store one-step predictions for EKF update

DADT (7) = −2*KA2*A(7) + SGW2*SGW2

IF (EVID.NE.3) THEN

DADT (8) = −(KA2+CL/V1)*A(8) + KA1*(5) + KA2*A(7)

50

A1 = A(1)

DADT (9) = 2*KA1*A(6)+2*KA2*A(8)−2*CL/V1*A(9)+SGW3*SGW3

A2 = A(2)

 

A3 = A(3)

115

$ERROR (OBS ONLY)

A4 = A(4)

 IF (ICALL.EQ.4) THEN

A5 = A(5)

  IF (DV.NE.0) Y = LOG(DV)

A6 = A(6)

  RETURN

55

A7 = A(7)

 ENDIF

A8 = A(8)

120

IPRED = LOG(A(3)/V1)

A9 = A(9)

W = SQRT(A(9)/(A(3)*A(3))+SIG**2)

ELSE

IRES = DV – IPRED

A1 = A1

IWRES = IRES/W

60

A2 = A2

Y = IPRED + W*EPS(1)

A3 = A3

125

$SIM (1)

A4 = A4

$EST METH=1 INTER

A5 = A5

$COV

A6 = A6

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tornøe, C.W., Overgaard, R.V., Agersø, H. et al. Stochastic Differential Equations in NONMEM®: Implementation, Application, and Comparison with Ordinary Differential Equations. Pharm Res 22, 1247–1258 (2005). https://doi.org/10.1007/s11095-005-5269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-5269-5

Key Words

Navigation