Skip to main content
Log in

Pharmacokinetics and Tissue Retention of (Gd-DTPA)-Cystamine Copolymers, a Biodegradable Macromolecular Magnetic Resonance Imaging Contrast Agent

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

To investigate the pharmacokinetics, long-term tissue retention of Gd(III) ions, and magnetic resonance imaging (MRI) contrast enhancement of extracellular biodegradable macromolecular Gd(III) complexes, (Gd-DTPA)-cystamine copolymers (GDCC), of different molecular weights.

Methods.

The pharmacokinetics of blood clearance and long-term Gd(III) retention of GDCC were investigated in Sprague-Dawley rats. Pharmacokinetic parameters were calculated by using a two-compartment model. The blood pool contrast enhancement of GDCC was evaluated in Sprague-Dawley rats on a Siemens Trio 3T MR scanner. Gd-(DTPA-BMA) was used as a control.

Results.

The α phase half-life of Gd-(DTPA-BMA) and GDCC with molecular weights of 18,000 (GDCC-18) and 60,000 Da (GDCC-60) was 0.48 ± 0.16 min, 1.08 ± 0.24 min, and 1.74 ± 0.57 min, and the β phase half-life was 21.2 ± 5.5 min, 26.5 ± 5.9 min, and 53.7 ± 15.9 min, respectively. GDCC had minimal long-term Gd tissue retention comparable to that of Gd-(DTPA-BMA). GDCC resulted in more significant contrast enhancement in the blood pool than Gd-(DTPA-BMA).

Conclusions.

GDCC provides a prolonged blood pool retention time for effective MRI contrast enhancement and then clears rapidly with minimal accumulation of Gd (III) ions. It is promising for further development as a blood pool MRI contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99:2293–2352 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. 2. L. E. Gerlowski and R. K. Jain. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31:288–305 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. 3. H. Maeda, L. W. Seymour, and Y. Miyamoto. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug. Chem. 3:351–362 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. 4. R. C. Brasch. Rationale and applications for macromolecular Gd-based contrast agents. Magn. Reson. Med. 22:282–287 (1991).

    CAS  PubMed  Google Scholar 

  5. 5. V. P. Torchilin. Polymeric contrast agents for medical imaging. Curr. Pharm. Biotechnol. 1:183–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. 6. H. Kobayashi and M. W. Brechbiel. Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol. Imaging 2:1–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. 7. R. Lauffer and T. J. Brady. Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates. Magn. Reson. Imaging 3:11–16 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. 8. G. Schuhmann-Giampieri, H. Schmitt-Willich, T. Frenzel, W. R. Press, and H. J. Weinmann. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest. Radiol. 26:969–974 (1991).

    CAS  PubMed  Google Scholar 

  9. 9. A. A. J. Bogdanov, R. Weissleder, H. W. Frank, A. V. Bogdanova, N. Nossif, B. K. Schaffer, E. Tsai, M. I. Papisov, and T. J. Brady. A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. Radiology 187:701–706 (1993).

    CAS  PubMed  Google Scholar 

  10. 10. E. C. Wiener, M. W. Brechbiel, H. Brothers, R. L. Magin, O. A. Gansow, D. A. Tomalia, and P. C. Lauterbur. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 31:1–8 (1994).

    CAS  PubMed  Google Scholar 

  11. 11. D. L. Ladd, R. Hollister, X. Peng, D. Wei, G. Wu, D. Delecki, R. A. Snow, J. L. Toner, K. Kellar, J. Eck, V. C. Desai, G. Raymond, L. B. Kinter, T. S. Desser, and D. L. Rubin. Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties. Bioconjugate Chem. 10:361–370 (1999).

    Article  CAS  Google Scholar 

  12. 12. R. Weissleder, A. J. Bogdanov, C. H. Tung, and H. J. Weinmann. Size optimization of synthetic graft copolymers for in vivo angiogenesis imaging. Bioconjugate Chem. 12:213–219 (2001).

    Article  CAS  Google Scholar 

  13. 13. H. Kobayashi, S. Kawamoto, S. K. Jo, H. L. Bryant, M. W. J. Brechbiel, and R. A. Star. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug. Chem. 14:388–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. 14. H. Kobayashi, N. Sato, A. Hiraga, T. Saga, Y. Nakamoto, H. Ueda, J. Konishi, K. Togashi, and M. W. Brechbiel. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn. Reson. Med. 45:454–460 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. 15. A. Gossmann, Y. Okuhata, D. M. Shames, T. H. Helbich, T. P. Roberts, M. F. Wendland, S. Huber, and R. C. Brasch. Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media-preliminary experience. Radiology 213:265–272 (1999).

    CAS  PubMed  Google Scholar 

  16. 16. F. N. Franano, W. B. Edwards, M. J. Welch, M. W. Brechbiel, O. A. Gansow, and J. R. Duncan. Biodistribution and metabolism of targeted and nontargeted protein-chelate-gadolinium complexes: evidence for gadolinium dissociation in vitro and in vivo. Magn. Reson. Imaging 13:201–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. 17. S. J. Wang, M. Brechbiel, and E. C. Wiener. Characteristics of a new MRI contrast agent prepared from polypropyleneimine dendrimers, generation 2. Invest. Radiol. 38:662–668 (2003).

    CAS  PubMed  Google Scholar 

  18. 18. Z. R. Lu, D. L. Parker, K. C. Goodrich, X. Wang, J. G. Dalle, and H. R. Buswell. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn. Reson. Med. 51:27–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. 19. Taconic. Hematological charts & clinical chemistry values for Sprague Dawley rats in technical library, http://www.taconic.com/healthr/hematology/sdheme.htm.

  20. 20. D. J. Parmelee, R. C. Walovitch, H. S. Ouellet, and R. B. Lauffer. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest. Radiol. 32:741–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. 21. M. T. Vlaardingerbroek and J. A. den Boer. Magnetic Resonance Imaging, Theory and Practice. 3rd Edition, Springer-Verlag, New York, NY, 2003.

    Google Scholar 

  22. 22. N. Sato, H. Kobayashi, A. Hiraga, T. Saga, K. Togashi, J. Konishi, and M. W. Brechbiel. Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn. Reson. Med. 46:1169–1173 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Rong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Feng, Y., Ke, T. et al. Pharmacokinetics and Tissue Retention of (Gd-DTPA)-Cystamine Copolymers, a Biodegradable Macromolecular Magnetic Resonance Imaging Contrast Agent. Pharm Res 22, 596–602 (2005). https://doi.org/10.1007/s11095-005-2489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2489-7

Key words:

Navigation