Skip to main content

Advertisement

Log in

Long-Term Stability of Chitosan-Based Polyplexes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

There is a lack of information about the long-term stability of chitosan-based polyplexes although a large amount is known as regards transfection efficiency and physicochemical characteristics. The aim of this work is to study the transfection efficiency and physicochemical properties of chitosan-based polyplexes over time when stored at different temperatures in an acetate-buffer at pH 5.5.

Methods.

Aqueous samples of chitosan-based polyplexes were aged at 4°C, 25°C, and 45°C for up to 1 year. Samples were taken at predetermined time-points and evaluated for in vitro transfection efficiency and physiochemical properties (particle size, zeta potential).

Results.

One year of storage at 4°C did not result in any major changes in the properties of the polyplexes. At 25°C there were minor changes in the physicochemical characteristics of the polyplexes, and the in vitro transfection efficiency was reduced at 1 year of storage. Storage at 45°C altered both the in vitro transfection efficiency and the physicochemical properties of the polyplexes after a short time.

Conclusions.

The biological and physicochemical stability of the chitosan-based polyplexes are maintained for 1 year of storage in acetate-buffer at 4°C. The changes in the polyplex characteristics at elevated temperatures may be explained by degradation of both plasmid and chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. A. K. Singla and M. Chawla. Chitosan: some pharmaceutical and biological aspects - an update. J. Pharm. Pharmacol. 53:1047–1067 (2001).

    Google Scholar 

  2. 2. L. Illum. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15:1326–1331 (1998).

    Google Scholar 

  3. 3. J. Akbuga. A biopolymer: Chitosan. Int. J. Pharm. Adv. 1:3–18 (1995).

    Google Scholar 

  4. 4. R. J. Mumper, J. Wang, J. M. Claspell, and A. P. Rolland. Novel polymeric condensing carriers for gene delivery. Proc. Int. Symp. Control. Rel. Bioact. Mat. 22:178–179 (1995).

    Google Scholar 

  5. 5. F. C. MacLaughlin, R. J. Mumper, J. J. Wang, J. M. Tagliaferri, I. Gill, M. Hinchcliffe, and A. P. Rolland. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Control. Rel. 56:259–272 (1998).

    Google Scholar 

  6. 6. S. C. W. Richardson, H. V. J. Kolbe, and R. Duncan. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 178:231–243 (1999).

    Google Scholar 

  7. 7. M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K. M. V\arum, and P. Artursson. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 8:1108–1121 (2001).

    Google Scholar 

  8. 8. H.-Q. Mao, K. Roy, V. L. Troung-Le, K. A. Janes, K. Y. Lin, Y. Wang, J. T. August, and K. W. Leong. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J. Control. Rel. 70:399–421 (2001).

    Google Scholar 

  9. 9. K. Romøren, S. Pedersen, G. Smistad, Ø. Evensen, and B. J. Thu. The influence of formulation variables on in vitro transfection efficiency and physicochemical properties of chitosan-based polyplexes. Int. J. Pharm. 261:115–127 (2003).

    Google Scholar 

  10. 10. K. W. Leong, H. Q. Mao, V. L. Truong-Le, K. Roy, S. M. Walsch, and J. T. August. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Rel. 53:183–193 (1998).

    Google Scholar 

  11. 11. H.-Q. Mao, K. Roy, V. Truong-Le, and K. W. Leong. DNA-chitosan nanospheres: Derivatization and storage stability. Proc Int Symp Control Rel Bioact Mat. 24:671–672 (1997).

    Google Scholar 

  12. 12. T. Hao, U. McKeever, and M. L. Hedley. Biological potency of microsphere encapsulated plasmid DNA. J. Control. Rel. 69:249–259 (2000).

    Google Scholar 

  13. 13. C. R. Middaugh, R. K. Evans, D. L. Montgomery, and D. R. Casimiro. Analysis of plasmid DNA from a pharmaceutical perspective. J. Pharm. Sci. 87:130–146 (1998).

    Google Scholar 

  14. 14. R. K. Evans, Z. Xu, K. E. Bohannon, B. Wang, M. W. Bruner, and D. B. Volkin. Evaluation of degradation pathways for plasmid DNA in pharmaceutical formulations via accelerated stability studies. J. Pharm. Sci. 89:76–87 (2000).

    Google Scholar 

  15. 15. G. A. F. Roberts. Chemical behaviour of chitin and chitosan. In G. A. F. Roberts (ed.), Chitin Chemistry, Macmillan Press Ltd, London, 1992, pp. 203–273.

    Google Scholar 

  16. 16. P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511–512 (1997).

    Google Scholar 

  17. 17. K. Romøren, B. J. Thu, and Ø. Evensen. Immersion delivery of plasmid DNA II. A study of the potentials of a chitosan based delivery system in rainbow trout (Oncorhynchus mykiss) fry. J. Control. Rel. 85:215–225 (2002).

    Google Scholar 

  18. 18. N. Fijan, D. Sulimanovic, M. Bearzotti, P. de Kinkelin, L. O. Zwillenberg, S. Chilmonczyk, and J. F. Vautherot. Some properties of the epithelioma papulosum cyprini (EPC) cell line from carp Cyprinus carpio. Ann Virol. (Inst Pasteur) 134 E:207–220 (1983).

    Google Scholar 

  19. 19. J. Y. Cherng, H. Talsma, D. J. Crommelin, and W. E. Hennink. Long term stability of poly((2-dimethylamino)ethyl methacrylate)-based gene delivery systems. Pharm. Res. 16:1417–1423 (1999).

    Google Scholar 

  20. 20. H. E. J. Hofland, L. Shephard, and S. M. Sullivan. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc. Natl. Acad. Sci. USA 93:7305–7309 (1996).

    Google Scholar 

  21. 21. O. Zelphati, C. Nguyen, M. Ferrari, J. Felgner, Y. Tsai, and P. L. Felgner. Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther. 5:1272–1282 (1998).

    Google Scholar 

  22. 22. T. Lindahl. Instability and decay of the primary structure of DNA. Nature 362:709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. 23. M. Koping-Hoggard, Y. S. Mel’nikova, K. M. Vårum, B. Lindman, and P. Artursson. Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J. Gene Med. 5:130–141 (2003).

    Google Scholar 

  24. 24. S. Danielsen, K. M. Vårum, and B. T. Stokke. Structural analysis of chitosan mediated DNA condensation by AFM: Influence of chitosan molecular parameters. Biomacromolecules 5:928–936 (2004).

    Google Scholar 

  25. 25. L.-Y. Lim, E. Khor, and C. E. Ling. Effects of dry heat and saturated steam on the physical properties of chitosan. J Biomed Mat Res. 48:111–116 (1999).

    Google Scholar 

  26. 26. E. Ruel-Gariepy, A. Chenite, C. Chaput, and S. Guirguis. and J. Leroux. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int. J. Pharm. 203:89–98 (2000).

    Google Scholar 

  27. 27. M. Jumaa, F. H. Furkert, and B. W. Muller. A new lipid emulsion formulation with high antimicrobial efficacy using chitosan. Eur. J. Pharm. Biopharm. 53:115–123 (2002).

    Google Scholar 

  28. 28. H. K. No, N. Y. Park, S. H. Lee, and S. P. Meyers. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74:65–72 (2002).

    Google Scholar 

  29. 29. H. M. Kam, E. Khor, and L. Y. Lim. Storage of partially deacetylated chitosan films. J Biomed Mat Res. 48:881–888 (1999).

    Google Scholar 

  30. 30. B. A. Lobo, S. A. Rogers, S. Choosakoonkriang, J. G. Smith, G. Koe, and C. R. Middaugh. Differential scanning calorimetric studies of the thermal stability of plasmid DNA complexed with cationic lipids and polymers. J. Pharm. Sci. 91:454–466 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øystein Evensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romøren, K., Aaberge, A., Smistad, G. et al. Long-Term Stability of Chitosan-Based Polyplexes. Pharm Res 21, 2340–2346 (2004). https://doi.org/10.1007/s11095-004-7687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-7687-1

Key words:

Navigation