Skip to main content
Log in

Intravenous Hydrophobic Drug Delivery: A Porous Particle Formulation of Paclitaxel (AI-850)

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

To develop a rapidly dissolving porous particle formulation of paclitaxel without Cremophor EL that is appropriate for quick intravenous administration.

Methods.

A rapidly dissolving porous particle formulation of paclitaxel (AI-850) was created using spray drying. AI-850 was compared to Taxol following intravenous administration in a rat pharmacokinetic study, a rat tissue distribution study, and a human xenograft mammary tumor (MDA-MB-435) model in nude mice.

Results.

The volume of distribution and clearance for paclitaxel following intravenous bolus administration of AI-850 were 7-fold and 4-fold greater, respectively, than following intravenous bolus administration of Taxol. There were no significant differences between AI-850 and Taxol in tissue concentrations and tissue area under the curve (AUC) for the tissues examined. Nude mice implanted with mammary tumors showed improved tolerance of AI-850, enabling higher administrable does of paclitaxel, which resulted in improved efficacy as compared to Taxol administered at its maximum tolerated dose (MTD).

Conclusions.

The pharmacokinetic data indicate that paclitaxel in AI-850 has more rapid partitioning from the bloodstream into the tissue compartments than paclitaxel in Taxol. AI-850, administered as an intravenous injection, has been shown to have improved tolerance in rats and mice and improved efficacy in a tumor model in mice when compared to Taxol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. S. N. Pace, G. W. Pace, I. Parikh, and A. K. Mishra. Novel injectable formulations of insoluble drugs. Pharm. Technol. 23:116–134 (1999).

    Google Scholar 

  2. 2. M. Hite, S. Turner, and C. Federici. Part 1: Oral delivery of poorly soluble drugs. Pharm. Manuf. Packing Sourcer Autumn:38–40 (2003).

    Google Scholar 

  3. 3. C. Lipinski. Poor aqueous solubility – an industry wide problem in drug discovery. Am. Pharm. Rev. 5:82–85 (2002).

    Google Scholar 

  4. 4. R. T. Liggins, W. L. Hunger, and H. M. Burt. Solid-state characterization of paclitaxel. J. Pharm. Sci. 86:1458–1463 (1997).

    Google Scholar 

  5. 5. L. van Zulen, J. Verweij, and A. Sparreboom. Role of formulation vehicles in taxane pharmacology. Invest. New Drugs 19:125–141 (2001).

    Google Scholar 

  6. 6. E. K. Rowinsky. The taxanes: dosing and scheduling considerations. Oncology 11(Suppl.):7–19 (1997).

    Google Scholar 

  7. 7. F. A. Greco and T. M. Hainsworth. One-hour paclitaxel infusions: a review of safety and efficacy. Cancer J. Sci. Am. 5:179–191 (1999).

    Google Scholar 

  8. 8. E. K. Rowinsky and R. C. Donehower. Paclitaxel (Taxol). N. Engl. J. Med. 332:1004–1014 (1995).

    Google Scholar 

  9. 9. E. K. Rowinsky. Paclitaxel pharmacology and other tumor types. Semin. Oncol. 24:S19-1–S19-12 (1997).

    Google Scholar 

  10. 10. A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. Int. J. Pharm. 235:179–192 (2002).

    Google Scholar 

  11. 11. S. Nuijen, M. Bouma, J. H. Schellens, and J. H. Beijnen. Progress in the development of alternative pharmaceutical formulations of taxanes. Invest. New Drugs. 19:143–153 (2001).

    Google Scholar 

  12. 12. R. Pawar, A. Shikanov, B. Vaisman, and A. J. Domb. Intravenous and regional paclitaxel formulations. Curr. Med. Chem. 11:397–402 (2004).

    Google Scholar 

  13. 13. S. S. Feng, L. Mu, K. Y. Win, and G. Huang. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem. 11:413–424 (2004).

    Google Scholar 

  14. 14. N. K. Ibrahim, N. Desai, S. Legha, P. Soon-Shiong, R. L. Theriault, E. Rivera, B. Esmaeli, S. E. Ring, A. Bedikian, G. N. Hortobagyi, and J. A. Ellerhorst. Phase I and pharmacokinetic study of ABI-007, a Cremaphor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8:1038–1044 (2002).

    Google Scholar 

  15. 15. T. Y. Kim, D. W. Kim, J. W. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim, and Y. J. Bang. Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10:3708–3716 (2004).

    Google Scholar 

  16. 16. P. P. Constantinides, A. Tustian, and D. R. Kessler. Tocol emulsions for drug solubilization and parenteral delivery. Adv. Drug Deliv. Rev. 56:1243–1255 (2004).

    Google Scholar 

  17. 17. O. Soepenberg, A. Sparreboom, M. J. de Jonge, A. S. Planting, G. de Heus, W. J. Loos, C. M. Hartman, C. Bowden, and J. Verweij. Real-time pharmacokinetics guiding clinical decisions; phase I study of a weekly schedule of liposome encapsulated paclitaxel in patients with solid tumors. Eur. J. Cancer 40:681–688 (2004).

    Google Scholar 

  18. 18. S. Streith, M. E. Eichhorn, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, and M. Dellian. Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int. J. Cancer 111:117–124 (2004).

    Google Scholar 

  19. 19. W. R. Perkins, I. Ahmad, X Li, D. J. Hirsh, G. R. Masters, C. J. Fecko, S. Ali, J. Nguyen, J. Schupsky, C. Herbert, A. S. Janoff, and E. Mayhew. Novel therapeutic non-particles (lipocores): trapping poorly water soluble compounds. Int. J. Pharm. 200:27–39 (2001).

    Google Scholar 

  20. 20. E. Harper, W. Dang, R. G. Lapidus, and R. I. Garver. Enhanced efficacy of a novel controlled release paclitaxel formulation (PACLIMER delivery system) for local-regional therapy of lung cancer tumor nodules in mice. Clin. Cancer Res. 5:4242–4248 (1999).

    Google Scholar 

  21. 21. L. Mu and S. S. Feng. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Rel. 76:239–254 (2001).

    Google Scholar 

  22. 22. J. A. Straub, E. Mathiowitz, H. Bernstein, H. T. Brush, and R. E. Wing. Method for making porous microparticles by spray drying. Acusphere, Inc. U.S. Patent No. 5,853,698 (1998).

  23. 23. J. Straub, H. Bernstein, D. E. Chickering, S. Khattak, and G. Randall. Porous drug matrices and methods of manufacture thereof. Acusphere, Inc. U.S. Patent No. 6,395,300 (2002).

  24. 24. J. Straub, H. Bernstein, D. E. Chickering, S. Khattak, and G. Randall. Porous paclitaxel matrices and methods of manufacture thereof. Acusphere, Inc.. U.S. Patent No. 6,610,317 (2003).

  25. 25. J. Straub, H. Bernstein, D. E. Chickering, and G. Randall. Porous celecoxib matrices and methods of manufacture thereof. Acusphere, Inc. U.S. Patent No. 6,589,557 (2003).

  26. 26. J. Plowman, D. J. Dykes, M. Hollingshead, L. Simpson-Herren, and M. C. Alley. Human tumor xenograft models in NCI drug development. In B. A. Teicher (eds.), Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval, Humana Press, Totowa, NJ, 1997, pp. 101–125.

    Google Scholar 

  27. 27. Data on file with Southern Research Institute, Birmingham, AL, USA.

  28. 28. C. M. Spenser and D. Faulds. Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48:794–847 (1994).

    Google Scholar 

  29. 29. C. M. Kearns. Pharmacokinetics of the taxanes. Pharmacotherapy 17:105S–109S (1997).

    Google Scholar 

  30. 30. L. van Zuylen, M. O. Karlsson, J. Verweij, E. Brouwer, P. de Bruijn, K. Nooter, G. Stoter, and A. Sparreboom. Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother. Pharmacol. 47:309–318 (2001).

    Google Scholar 

  31. 31. A. Sparreboom and J. Verweij. Paclitaxel pharmacokinetics, threshold models and dosing strategies. J. Clin. Oncol. 21:2804–2805 (2003).

    Google Scholar 

  32. 32. L. Gianni, C. M. Kearns, G. Giani, G. Capri, L. Vigano, A. Lacatelli, G. Bonadonna, and M. J. Egorin. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J. Clin. Oncol. 13:180–190 (1995).

    Google Scholar 

  33. 33. A. Sparreboom, O. van Telligen, W. J. Nooijen, and J. H. Beijnen. Tissue distribution, metabolism and excretion of paclitaxel in mice. Anticancer Drugs 7:78–86 (1996).

    Google Scholar 

  34. 34. A. Sparreboom, O. van Telligen, W. J. Nooijen, and J. H. Beijnen. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res. 56:2112–2115 (1996).

    Google Scholar 

  35. 35. L. Brannon-Peppas and J. O. Blanchette. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56:1649–1659 (2004).

    Google Scholar 

  36. 36. K. Ogawara, K. Higaki, and T. Kimura. Major determinants in hepatic disposition of polystyrene nanospheres: implication for rational design of particulate drug carriers. Crit. Rev. Ther. Drug Carrier Syst. 19:277–306 (2002).

    Google Scholar 

  37. 37. S. S. Davis and L. Illum. Polymeric microspheres as drug carriers. Biomaterials 9:111–115 (1988).

    Google Scholar 

  38. 38. N. Oku and Y. Namba. Long-circulating liposomes. Crit. Rev. Ther. Drug Carrier Syst. 11:231–270 (1994).

    Google Scholar 

  39. 39. T. Sakaeda and K. Hirano. Effect of composition on biological fate of oil particles after intravenous injection of o/w lipid emulsions. J. Drug Target. 6:273–284 (1998).

    Google Scholar 

  40. 40. A. J. Olsanski, L. D. Lewis, C. Mita, R. C. Walovitch, R. P. Perez, D. P. Tuck, and E. K. Rowinsky. Phase 1 and pharmacokinetic study of AI-850, a novel microparticle hydrophobic drug delivery system (HDDS) for paclitaxel. J. Clin. Oncol. 22(Suppl.):2048 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Straub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, J., Chickering, D., Lovely, J. et al. Intravenous Hydrophobic Drug Delivery: A Porous Particle Formulation of Paclitaxel (AI-850). Pharm Res 22, 347–355 (2005). https://doi.org/10.1007/s11095-004-1871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-1871-1

Key Words:

Navigation