Skip to main content

Advertisement

Log in

Engineering Polysaccharide-Based Polymeric Micelles to Enhance Permeability of Cyclosporin A Across Caco-2 Cells

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

To assess and compare the effectiveness of two types of polysaccharide-based micelles as delivery vehicles for poorly water soluble drugs by monitoring their permeability across Caco-2 cell monolayers.

Methods.

Dextran (DEX) and hydroxypropylcellulose (HPC) were hydrophobically modified (HM) by grafting polyoxyethylene cetyl ether (POE-C16, 15 mol% and 5.4 mol%, respectively). The onset of micellization and mean diameter of polymeric micelles formed by HM-DEX and HM-HPC were determined by fluorescence spectroscopy and dynamic light scattering, respectively. Cyclosporin A (CsA)-loaded polymeric micelles were prepared by a dialysis procedure, and the amount of incorporated CsA was assayed by high performance liquid chromatography (HPLC). The stability of micelles in simulated gastric and intestinal fluids was studied as a function of contact time, and their cytotoxicity toward Caco-2 cells was evaluated using the MTT colorimetric assay. The bidirectional transport across Caco-2 cell monolayers of CsA entrapped in HM-DEX and HM-HPC micelles and of the polymers themselves was evaluated in the presence and absence of P-glycoprotein inhibitor.

Results.

The amount of CsA incorporated in HM-HPC and HM-DEX micelles reached 5.5 and 8.5% w/w, respectively (entrapment efficiency of 22% or more). The polymeric micelles exhibited high stability in gastric and intestinal fluids and no significant cytotoxicity toward Caco-2 cells. The apical to basal permeability of CsA across Caco-2 cells increased significantly when loaded in polymeric micelles compared to free CsA.

Conclusions.

Polysaccharide-based polymeric micelles are promising carriers for the oral delivery of poorly water soluble drugs. In vitro tests indicate that, overall, HM-HPC micelles are more effective compared to HM-DEX micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

apical side

BL:

basolateral side

CsA:

cyclosporin A

DEX:

dextran T10

HPC:

hydroxypropylcellulose

P85:

Pluronic P85

PGI:

P-glycoprotein inhibitor

P-gp:

P-glycoprotein

POE-C16:

polyoxyethylene (10) cetyl ether

References

  1. 1. R. M. Merion, D. J. White, S. Thiru, D. D. Evans, and R. Y. Calne. Cyclosporine: five years experience in cadaveric renal transplantation. N. Engl. J. Med. 310:148–154 (1984).

    Google Scholar 

  2. 2. I. J. Klompmaker, J. M. Wierda, W. J. Sluiter, D. R. Uges, E. B. Haagsma, R. Verwer, and M. J. Slooff. Pharmacokinetics of cyclosporine A after intravenous and oral administration in liver transplant patients measured with high-performance liquid chromatography. Ther. Drug Monit. 15:60–64 (1993).

    Google Scholar 

  3. 3. F. Galla, V. Marzocchi, L. Croattino, D. Poz, M. Baraldo, and M. Furlanut. Oral and intravenous disposition of cyclosporine in psoriatic patients. Ther. Drug Monit. 17:302–304 (1995).

    Google Scholar 

  4. 4. A. C. Foradori, L. Martinez, A. Vacarezza, L. Elberg, A. Loveluck, and C. Pinto. Pharmacokinetics of a new galenical formulation of oral cyclosporine A in stable kidney transplanted patients. Transplant. Proc. 26:2969–2972 (1994).

    Google Scholar 

  5. 5. I. S. Sketris, J. G. Lawen, L. Beauregard-Zollinger, P. Belitsky, D. Landsberg, M. L. Givner, and P. Keown. Comparison of the pharmacokinetics of cyclosporine sandimmune with sandimmune neoral in stable renal transplant patients. Transplant. Proc. 26: 2961–2963 (1994).

    Google Scholar 

  6. 6. D. M. Woodcock, S. Jefferson, M. E. Linsenmeyer, P. J. Crowther, G. M. Chojnowski, B. Williams, and I. Bertoncello. Reversal of the multidrug resistance phenotype with cremophor EL, a common vehicle for water-insoluble vitamins and drugs. Cancer Res. 50:4199–4203 (1990).

    Google Scholar 

  7. 7. F. Seeballuck, M. B. Ashford, and C. M. O’Driscoll. The effects of Pluronics block copolymers and Cremophor EL on intestinal lipoprotein processing and the potential link with P-glycoprotein in Caco-2 cells. Pharm. Res. 20:1085–1092 (2003).

    Google Scholar 

  8. 8. J. Mason. Renal side-effects of cyclosporin A. Br. J. Dermatol. 122:71–77 (1990).

    Google Scholar 

  9. 9. K. L. Skorecki, W. P. Rutledge, and R. W. Schrier. Acute cyclosporine nephrotoxicity-prototype for a renal membrane signalling disorder. Kidney Int. 42:1–10 (1992).

    Google Scholar 

  10. 10. L. S. Friedman, J. L. Dienstag, P. W. Nelson, P. S. Russell, and A. B. Cosimi. Anaphylactic reaction and cardiopulmonary arrest following intravenous cyclosporine. Am. J. Med. 78:343–345 (1985).

    Google Scholar 

  11. 11. D. L. Howrie, R. J. Ptachcinski, B. P. Griffith, R. J. Hardesty, J. T. Rosenthal, G. J. Burckart, and R. Venkataramanan. Anaphylactoid reactions associated with parenteral cyclosporine use: possible role of Cremophor EL. Drug Intell. Clin. Pharm. 19: 425–427 (1985).

    Google Scholar 

  12. 12. C. Allen, D. Maysinger, and A. Eisenberg. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces 16:3–27 (1999).

    Google Scholar 

  13. 13. X. Chen, T. Young, M. Sarkari, R. Williams, and K. Johnston. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int. J. Pharm. 242:3–14 (2002).

    Google Scholar 

  14. 14. A. Sanchez and M. J. Alonso. Poly(D,L-lactide-co-glycolide) micro and nanospheres as a way to prolong blood/plasma levels of subcutaneously injected cyclosporin A. Eur. J. Pharm. Biopharm. 41:31–37 (1995).

    Google Scholar 

  15. 15. K. Itoh, A. Pongpeerapat, Y. Tozuka, T. Oguchi, and K. Yamamoto. Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS. Chem. Pharm. Bull. (Tokyo) 51:171–174 (2003).

    Google Scholar 

  16. 16. M. Al-Meshal, S. H. Khidr, M. A. Bayomi, and A. A. Al-Angary. Oral administration of liposomes containing cyclosporine: a pharmacokinetic study. Int. J. Pharm. 168:163–168 (1998).

    Google Scholar 

  17. 17. B. Ozpolat, G. Lopez-Berestein, P. Adamson, C. J. Fu, and A. H. Williams. Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteers. J. Pharm. Pharm. Sci. 6:292–301 (2003).

    Google Scholar 

  18. 18. F. Nacka, M. Cansell, P. Meleard, and N. Combe. Incorporation of alpha-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies. Lipids 36:1313–1320 (2001).

    Google Scholar 

  19. 19. M. C. Taira, N. S. Chiaramoni, K. M. Pecuch, and S. Alonso-Romanowski Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 11:123–128 (2004).

    Google Scholar 

  20. 20. S. Bonduelle, M. Carrier, C. Pimienta, J. P. Benoit, and V. Lenaerts. Tissue concentration of nanoencapsulated radiolabelled cyclosporin following peroral delivery in mice or ophthalmic application in rabbits. Eur. J. Pharm. Biopharm. 42:313–319 (1996).

    Google Scholar 

  21. 21. J. Molpeceres, M. R. Aberturas, and M. Guzman. Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization. J. Microencapsul. 17:599–614 (2000).

    Google Scholar 

  22. 22. E. Ugazio, R. Cavalli, and M. R. Gasco. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int. J. Pharm. 241: 341–344 (2002).

    Google Scholar 

  23. 23. J. Daia, T. Nagaib, X. Wanga, T. Zhangc, M. Menga, and Q. Zhang. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int. J. Pharm. 280:229–240 (2004).

    Google Scholar 

  24. 24. M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13:1838–1845 (1996).

    Google Scholar 

  25. 25. M. C. Varela, M. Guzman, J. Molpeceres, M. D. R. Aberturas, D. Rodriguez-Puyol, and M. Rodriguez-Puyol. Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats. Eur. J. Pharm. Sci. 12:471–478 (2001).

    Google Scholar 

  26. 26. R. Gref, P. Quellec, A. Sanchez, P. Calvo, E. Dellacherie, and M. J. Alonso. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur. J. Pharm. Biopharm. 51:111–118 (2001).

    Google Scholar 

  27. 27. A. M. De Campos, A. Sanchez, and M. J. Alonso. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 224:159–168 (2001).

    Google Scholar 

  28. 28. G. Sertsou, J. Butler, J. Hempenstall, and T. Rades. Solvent change co-precipitation with hydroxypropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug. J. Pharm. Pharmacol. 54:1041–1047 (2002).

    Google Scholar 

  29. 29. M. F. Francis, L. Lavoie, F. M. Winnik, and J. C. Leroux. Solubilization of cyclosporin A in dextran-g-polyethyleneglycolalkyl ether polymeric micelles. Eur. J. Pharm. Biopharm. 56:337–346 (2003).

    Google Scholar 

  30. 30. M. F. Francis, M. Piredda, and F. M. Winnik. Solubilization of poorly water soluble drugs in micelles of hydrophobically modified hydroxypropylcellulose copolymers. J. Control. Rel. 93: 59–68 (2003).

    Google Scholar 

  31. 31. D. D. Lasic. Mixed micelles in drug delivery. Nature 355:279–280 (1992).

    Google Scholar 

  32. 32. H. E. J. Hofland, J. A. Bouwstra, J. C. Verhoef, G. Buckton, B. Z. Chowdry, M. Ponec, and H. E. Junginger. Safety aspects of non-ionic surfactant vesicles-a toxicity study related to the physicochemical characteristics of non-ionic surfactants. J. Pharm. Pharmacol. 44:287–294 (1992).

    Google Scholar 

  33. 33. B. G. Yu, T. Okano, K. Kataoka, S. Sardari, and G. S. Kwon. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L-aspartate) micelles. J. Control. Rel. 56:285–291 (1998).

    Google Scholar 

  34. 34. S. C. Kim, D. W. Kim, Y. H. Shim, J. S. Bang, H. S. Oh, S. W. Kim, and M. H. Seo. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Rel. 72:191–202 (2001).

    Google Scholar 

  35. 35. R. Jevprasesphant, J. Penny, D. Attwood, N. B. McKeown, and A. D’Emanuele. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 20: 1543–1550 (2003).

    Google Scholar 

  36. 36. C. Larsen. Dextran prodrugs-structure and stability in relation to therapeutic activity. Adv. Drug Deliv. Rev. 3:103–154 (1989).

    Google Scholar 

  37. 37. N. P. Couch. The clinical status of low molecular weight dextran: a critical review. Clin. Pharmacol. Ther. 6:656–665 (1965).

    Google Scholar 

  38. 38. J. P. Draye, B. Delaey, A. Van de Voorde, A. Van Den Bulcke, B. Bogdanov, and E. Schacht. In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:99–107 (1998).

    Google Scholar 

  39. 39. I. S. Kim, Y. I. Jeong, and S. H. Kim. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer. Int. J. Pharm. 205:109–116 (2000).

    Google Scholar 

  40. 40. Y. Zhang and C. C. Chu. Biodegradable dextran-polylactide hydrogel networks: their swelling, morphology and the controlled release of indomethacin. J. Biomed. Mater. Res. 59:318–328 (2002).

    Google Scholar 

  41. 41. R. Mehvar. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Rel. 69:1–25 (2000).

    Google Scholar 

  42. 42. V. Pade and S. Stavchansky. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm. Res. 14:1210–1215 (1997).

    Google Scholar 

  43. 43. K. L. Audus, R. L. Bartel, I. J. Hidalgo, and R. T. Borchardt. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm. Res. 7:435–451 (1990).

    Google Scholar 

  44. 44. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96: 736–749 (1989).

    CAS  PubMed  Google Scholar 

  45. 45. J. N. Cogburn, M. G. Donovan, and C. S. Schasteen. A model of human small intestinal absorptive cells. 1. Transport barrier. Pharm. Res. 8:210–216 (1991).

    Google Scholar 

  46. 46. F. Delie and R. Werner. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit. Rev. Ther. Drug Carrier Syst. 14:221–286 (1997).

    Google Scholar 

  47. 47. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43 (2001).

    Google Scholar 

  48. 48. K. I. Hosoya, K. J. Kim, and V. H. Lee. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 13:885–890 (1996).

    Google Scholar 

  49. 49. J. Hunter and B. H. Hirst. Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv. Drug Deliv. Rev. 25:129–157 (1997).

    Google Scholar 

  50. 50. P. Artursson and R. T. Borchardt. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res. 14: 1655–1658 (1997).

    Google Scholar 

  51. 51. G. krishna. K. J. Chen, C. C. Lin and A. A. Nomeir. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. Int. J. Pharm. 222:77–89 (2001).

    Google Scholar 

  52. 52. W. Kamm, A. Jonczyk, T. Jung, G. Luckenbach, P. Raddatz, and T. Kissel. Evaluation of absorption enhancement for a potent cyclopeptidic alpha(nu)beta(3)-antagonist in a human intestinal cell line (Caco-2). Eur. J. Pharm. Sci. 10:205–214 (2000).

    Google Scholar 

  53. 53. F. Faassen, J. Kelder, J. Lenders, R. Onderwater, and H. Vromans. Physicochemical properties and transport of steroids across Caco-2 cells. Pharm. Res. 20:177–186 (2003).

    Google Scholar 

  54. 54. P. Artursson, and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175:880–885 (1991).

    Google Scholar 

  55. 55. S. Yee. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man: fact or myth. Pharm. Res. 14:763–766 (1997).

    Google Scholar 

  56. 56. S. Yamashita, Y. Tanaka, Y. Endoh, Y. Taki, T. Sakane, T. Nadai, and H. Sezaki. Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm. Res. 14:486–491 (1997).

    Google Scholar 

  57. 57. Y. Tezuka, K. Imai, M. Oshima, and T. Chiba. Determination of substituent distribution in cellulose ethers by 13C- and 1H-NMR studies of their acetylated derivatives: O-(2-hydroxypropyl) cellulose. Carbohydr. Res. 196:1–10 (1990).

    Google Scholar 

  58. 58. M. G. Wirick and M. H. Waldman. Some solution properties of fractionated water-soluble hydroxypropylcellulose. J. Appl. Polym. Sci. 14:579–597 (1970).

    Google Scholar 

  59. 59. M. F. Francis, M. Cristea, and F. M. Winnik. Polymeric micelles for oral drug delivery: why and how. Pure Appl. Chem. 76: 1321–1335 (2004).

    Google Scholar 

  60. 60. D. Blakeslee. Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF). II. Preparation, purity and stability of the compound. J. Immunol. Methods 17:361–364 (1977).

    Google Scholar 

  61. 61. C. L. Zhao, M. A. Winnik, G. Riess, and M. D. Croucher. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 6:514–516 (1990).

    Google Scholar 

  62. 62. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63 (1983).

    Article  Google Scholar 

  63. 63. M. B. Hansen, S. E. Nielsen, and K. Berg. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119:203–210 (1989).

    Google Scholar 

  64. 64. C. A. Bailey, P. Bryla, and A. W. Malick. The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv. Drug Deliv. Rev. 22:85–103 (1996).

    Google Scholar 

  65. 65. M. M. Nerurkar, P. S. Burton, and R. T. Borchardt. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharm. Res. 13:528–534 (1996).

    Google Scholar 

  66. 66. E. V. Batrakova, H. Y. Han, V. Y. Alakhov, D. W. Miller, and A. V. Kabanov. Effects of pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm. Res. 15:850–855 (1998).

    Google Scholar 

  67. 67. E. V. Batrakova, H. Y. Han, D. W. Miller, and A. V. Kabanov. Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm. Res. 15: 1525–1532 (1998).

    Google Scholar 

  68. 68. P. Augustijns, T. P. Bradshaw, L. S. Gan, R. W. Hendren, and D. R. Thakker. Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Commun. 197:360–365 (1993).

    Google Scholar 

  69. 69. G. Fricker, J. F. Drewe, J. Huwyler, H. Gutmann, and C. Beglinger. Relevance of P-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. Br. J. Pharmacol. 118: 1841–1847 (1996).

    Google Scholar 

  70. 70. Y. Y. Chiu, K. Higaki, B. L. Neudeck, J. L. Barnett, L. S. Welage, and G. L. Amidon. Human jejunal permeability of cyclosporin A: influence of surfactants on P-glycoprotein efflux in Caco-2 cells. Pharm. Res. 20:749–756 (2003).

    Google Scholar 

  71. 71. D. W. Miller, E. V. Batrakova, T. O. Waltner, V. Y. Alakhov, and A. V. Kabanov. Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjugate Chem. 8:649–657 (1997).

    Google Scholar 

  72. 72. V. J. Wacher, J. A. Silverman, Y. Zhang, and L. Z. Benet. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci. 87:1322– 1330 (1998).

    Google Scholar 

  73. 73. E. V. Batrakova, S. Li, D. W. Miller, and A. Kabanov. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm. Res. 16: 1366–1372 (1999).

    Google Scholar 

  74. 74. R. Wiwattanapatapee, B. Carreno-Gomez, N. Malik, and R. Duncan. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17:991–998 (2000).

    Google Scholar 

  75. 75. M. El-Sayed, M. Ginski, C. Rhodes, and H. Ghandehari. Trans-epithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Rel. 81:355–365 (2002).

    Google Scholar 

  76. 76. M. El-Sayed, C. A. Rhodes, M. Ginski, and H. Ghandehari. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int. J. Pharm. 265:151–157 (2003).

    Google Scholar 

  77. 77. P. Jani, G. W. Halbert, J. Langridge, and A. T. Florence. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol. 42:821–826 (1990).

    Google Scholar 

  78. 78. J. P. Ebel. A method for quantifying particle absorption from the small intestine of the mouse. Pharm. Res. 7:848–851 (1990).

    Google Scholar 

  79. 79. L. Simon, G. Shine, and A. D. Dayan. Translocation of particulates across the gut wall - a quantitative approach. J. Drug Target. 3:217–219 (1995).

    Google Scholar 

  80. 80. K. E. Carr, R. A. Hazzard, S. Reid, and G. M. Hodges. The effect of size on uptake of orally administered latex microparticles in the small intestine and transport to mesenteric lymph nodes. Pharm. Res. 13:1205–1209 (1996).

    Google Scholar 

  81. 81. A. T. Florence and N. Hussain. Trancytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv. Drug Deliv. Rev. 50:S69–S89 (2001).

    Google Scholar 

  82. 82. Y. Miyazaki, S. Yakou, T. Nagai, and K. Takayama. Release profiles of theophylline from microspheres consisting of dextran derivatives and cellulose acetate butyrate: effect of polyion complex formation. Drug Dev. Ind. Pharm. 29:795–804 (2003).

    Google Scholar 

  83. 83. G. Ponchel. and J. Irache. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv. Drug Deliv. Rev. 34:191–219 (1998).

    Google Scholar 

  84. 84. J. K. Vasir, K. Tambwekar, and S. Garg. Bioadhesive micro-spheres as a controlled drug delivery system. Int. J. Pharm. 255: 13–32 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francçoise M. Winnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, M., Cristea, M., Yang, Y. et al. Engineering Polysaccharide-Based Polymeric Micelles to Enhance Permeability of Cyclosporin A Across Caco-2 Cells. Pharm Res 22, 209–219 (2005). https://doi.org/10.1007/s11095-004-1188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-1188-0

Key Words:

Navigation