Skip to main content
Log in

Anticancer Drug Delivery Systems Based on Curcumin Nanostructures: A Review

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In recent years, the application of nanostructures in biomedical and pharmaceutical fields has increased. The special designs and compositions make nanocomposites very useful alternatives to conventional materials. Curcumin is a promising anti-cancer agent that has a positive and significant effect on chemotherapeutic achievements. The anticancer properties of curcumin have been widely investigated in different forms such as nanoparticles and nanocomposite structures. Chitosan-based nanocomposites, magnetic nanoparticles, polymer nanocomposites and blends, and montmorillonite- and alginate-based nanocomposites have been used in loading curcumin for various purposes. The anticancer preparations of curcumin nanoparticles and drug release systems employing curcumin-loaded nanoparticles, electrospun nanofibers, and hydrogel nanocomposites have been investigated. This review provides a summary of the applications of nanostructures containing curcumin, especially in controlled drug release systems. The curcumin nanoparticles and nanocomposites are suitable candidates for anticancer applications. On the nano-scale, curcumin has better aqueous solubility and, if used in a nanocomposite, there is a good ability for manipulating the drug delivery system properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. E. Nemutlu, İ. Eroğlu, H. Eroğlu, et al., Curr. Anal. Chem., 15(4), 373 – 409 (2019).

    CAS  Google Scholar 

  2. F. Yang, P. Song, M. Ruan, et al., FlatChem, 100133 (2019).

  3. Z. Lin, G. Wu, L. Zhao, et al., IEEE Nanotechnol. Mag., 13(5), 4 – 14 (2019).

    Google Scholar 

  4. S. Merino, C. Martin, K. Kostarelos, et al., ACS Nano, 9(5), 4686 – 4697 (2015).

    PubMed  CAS  Google Scholar 

  5. M. Baghani, R. Dolatabadi, and M. Baniassadi, Scientia Iranica Trans. B: Mech. Eng., 24(1), 249 (2017).

    Google Scholar 

  6. A. Y. Denisov, E. Kloser, D. G. Gray, et al., J. Biomol. NMR, 47(3), 195 – 204 (2010).

    PubMed  CAS  Google Scholar 

  7. O. Galkina, V. Ivanov, A. Agafonov, et al., J. Mater. Chem. B, 3(8), 1688 – 1698 (2015).

    PubMed  CAS  Google Scholar 

  8. P. Christian, F. Von der Kammer, M. Baalousha, et al., Ecotoxicology, 17(5), 326 – 343 (2008).

    PubMed  CAS  Google Scholar 

  9. W. S. Khan, N. N. Hamadneh, and W. A. Khan, Science and Applications of Tailored Nanostructures, One Central Press (OCP) (2016).

  10. J. Parameswaranpillai, N. Hameed, T. Kurian, et al., Nanocomposite Materials: Synthesis, Properties and Applications, CRC Press (2016).

  11. S. Tjong and G. Wang, Mater. Sci. Eng. A, 386(1 – 2), 48 – 53 (2004).

    Google Scholar 

  12. H. Fischer, Mater. Sci. Eng. C, 23(6 – 8), 763 – 772 (2003).

    Google Scholar 

  13. J. Du, J. Liu, P. Gong, et al., Mater. Lett., 196, 165 – 167 (2017).

    CAS  Google Scholar 

  14. G. Yang, H. Gong, T. Liu, et al., Biomaterials, 60, 62 – 71 (2015).

    PubMed  CAS  Google Scholar 

  15. M. Salem, S. Rohani, and E. R. Gillies, Res. Adv., 4(21), 10815 – 10829 (2014).

    CAS  Google Scholar 

  16. N. A. Kamel, A. A. Soliman, N. N. Rozik, et al., J. App. Pharm. Sci., 8(5), 035 – 044 (2018).

    CAS  Google Scholar 

  17. S. Yılmaz, H. Ülger, T. Ertekin,, et al., Iranian J. Basic Med. Sci., 22(4), 418 (2019).

    Google Scholar 

  18. M. Güran, G. Şanlıtürk, N. R. Kerküklü, et al., Eur. J. Pharmacol., 172486 (2019).

  19. W. Hu, M. Cai, D. Qi, et al., Pharm. Chem. J., 51(10), 902 – 906 (2018).

    CAS  Google Scholar 

  20. X. Lin, T. Ammosova, N. Kumari, et al., Curr. Pharm. Design, 23(28), 4122 – 4132 (2017).

    CAS  Google Scholar 

  21. W. Dijiong, W. Xiaowen, X. Linlong, et al., Iranian J. Basic Med. Sci., 22(6), 660 (2019).

    Google Scholar 

  22. F. Attari, M. Zahmatkesh, H. Aligholi, et al., DARU J. Pharm. Sci., 23(1), 33 (2015).

    Google Scholar 

  23. I. Brigger, C. Dubernet, and P. Couvreur, Adv. Drug Deliv. Rev., 64, 24 – 36 (2012).

    Google Scholar 

  24. M. Peter, in; Biopolymers, (Polysaccharides II), S. De Baets, E. J. Vandamme, and A. Steinbuchel (Eds), Wiley–VCH, Weinheim (2002).

  25. H. Honarkar, M. Barikani, Monatsh Chem. Chem. Monthly, 140(12), 1403 (2009).

    CAS  Google Scholar 

  26. M. Rinaudo, Progr. Polym. Sci., 31(7), 603 – 632 (2006).

    CAS  Google Scholar 

  27. S. Barua, P. Chattopadhyay, M. M. Phukan, et al., RSC Adv., 4(88), 47797 – 47805 (2014).

    CAS  Google Scholar 

  28. Y. K. Lee, W. S. Lee, J. T. Hwang, et al., J. Agric. Food Chem., 1(57), 305 – 310 (2009).

    Google Scholar 

  29. M. Chen, D. Q. Le, S. Hein, et al., Int. J. Nanomed., 7, 4285 (2012).

    CAS  Google Scholar 

  30. A. Cojocariu and L. Profire, M. Aflori, et al., Appl. Clay Sci., 57, 1 – 9 (2012).

    CAS  Google Scholar 

  31. S. K. Malek, M. A. Gabris, B. H. Jume, et al., DARU J. Pharm. Sci., 26(1), 1 – 12 (2018).

    Google Scholar 

  32. F. Mazuel, A. Espinosa, N. Luciani, et al., ACS Nano, 10(8), 7627 – 7638 (2016).

    PubMed  CAS  Google Scholar 

  33. G. Prabha and V. Raj, J. Magn. Magn. Mater., 408, 26 – 34 (2016).

    CAS  Google Scholar 

  34. Z. Naderi and J. Azizian, J. Photochem. Photobiol. B: Biol., 185, 206 – 214 (2018).

    CAS  Google Scholar 

  35. C. Sun, J. S. Lee, and M. Zhang, Adv. Drug Deliv. Rev., 60(11), 1252 – 1265 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. R. K. Das, N. Kasoju, and U. Bora, Nanomed.: Nanotechnol. Biol. Med., 6(1), 153 – 160 (2010).

    CAS  Google Scholar 

  37. D. P. Mohanty, S. Biswal, and L. Nayak, Int. J. Curr. Eng. Technol., 5, 336 – 31 (2015).

    Google Scholar 

  38. F. He, H. Jiao, Y. Tian, et al., J. Biomater. Sci., Polym. Ed., 29(4), 325 – 343 (2018).

    CAS  Google Scholar 

  39. P. Adibzadeh and N. Motakef-Kazemi, J. Nanoanal., 5(3), 156 – 162 (2018).

    Google Scholar 

  40. A. A. Azeez, K. Y. Rhee, S. J. Park, et al., Engineering, 45(1), 308 – 320 (2013).

    CAS  Google Scholar 

  41. S. Jahanizadeh, F. Yazdian, A. Marjani, et al., Int. J. Biol. Macromol., 105, 757 – 763 (2017).

    PubMed  CAS  Google Scholar 

  42. I. Salcedo, C. Aguzzi, G. Sandri, et al., Appl. Clay Sci., 55, 131 – 137 (2012).

    CAS  Google Scholar 

  43. Q. Yuan, J. Shah, S. Hein, et al., Acta Biomater., 6(3), 1140 – 1148 (2010).

    PubMed  CAS  Google Scholar 

  44. P. Sarasanantham, P. Tissera, R. Wijesena, et al., Montmorillonite clay nano partcle embedded nano Fibers for UV protected curtains to be used in smart house with nano technology (2013).

  45. C. H. Goh, P. W. S. Heng, and L. W. Chan, Carbohydr. Polym., 88(1), 1 – 12 (2012).

    CAS  Google Scholar 

  46. A. K. Nayak and D. Pal, Alginates, in: Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, 11-Volume Set, CRC Press (2016), Vol. 1, pp. 89 – 98.

    Google Scholar 

  47. J. Yang, S. Chen, Y. Fang, Carbohydr. Polym., 75(2), 333 – 337 (2009).

    CAS  Google Scholar 

  48. A. K. Nayak and D. Pal, Int. J. Biol. Macromol., 49(4), 784 – 793 (2011).

    PubMed  CAS  Google Scholar 

  49. W. Song, X. Su, D. Gregory, et al., Nanomaterials, 8(11), 907 (2018).

    PubMed Central  Google Scholar 

  50. N. Sattarahmady, A. Moosavi-Movahedi, P. Bazzi, et al., Pharm. Chem. J., 50(3), 131 – 136 (2016).

    CAS  Google Scholar 

  51. J. Sun and H. Tan, Materials, 6(4), 1285 – 1309 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. F. Badrzadeh, A. Akbarzadeh, N. Zarghami, et al., Asian Pac. J. Cancer Prev., 15(20), 8931 – 8936 (2014).

    PubMed  Google Scholar 

  53. S. Amirsaadat, Y. Pilehvar-Soltanahmadi, F. Zarghami, et al., Artif. Cells, Nanomed. Biotechnol., 45(8), 1649 – 1656 (2017).

    CAS  Google Scholar 

  54. H. Sadeghzadeh, Y. Pilehvar-Soltanahmadi, A. Akbarzadeh, et al., Anticancer Agents Med. Chem., 17(10), 1363 – 1373 (2017).

    PubMed  CAS  Google Scholar 

  55. V. R. Yadav, S. Suresh, K. Devi, et al., J. Pharm. Pharmacol., 61(3), 311 – 321 (2009).

    PubMed  CAS  Google Scholar 

  56. V. R. Yadav, S. Suresh, K. Devi, et al., AAPS Pharm. Sci. Technol., 10(3), 752 (2009).

    CAS  Google Scholar 

  57. T. Nhujak, W. Saisuwan, M. Srisa-art, et al., J. Separat. Sci., 29(5), 666 – 676 (2006).

    CAS  Google Scholar 

  58. B. Sivakumar, R.G. Aswathy, Y. Nagaoka, et al., Mater. Express, 4(3), 183 – 195 (2014).

    CAS  Google Scholar 

  59. P. T. Ha, M. H. Le, T. M. N. Hoang, et al., Adv. Nat. Sci.: Nanosci. Nanotechnol., 3(3), 035002 (2012).

    Google Scholar 

  60. M. M. Yallapu, B. K. Gupta, M. Jaggi, et al., J. Colloid Interf. Sci., 351(1), 19 – 29 (2010).

    CAS  Google Scholar 

  61. R. Farajzadeh, Y. Pilehvar-Soltanahmadi, M. Dadashpour, et al., Artif. Cells Nanomed. Biotechnol., 46(5), 917 – 925 (2018).

    PubMed  CAS  Google Scholar 

  62. A. Ramazani, M. Abrvash, S. Sadighian, et al., Res. Chem. Intermed., 44(12), 7891 – 7904 (2018).

    CAS  Google Scholar 

  63. Y. Li, C. Zhu, and J. Kan, Metals, 5(4), 2401 – 2412 (2015).

    CAS  Google Scholar 

  64. R. Dhivya, J. Ranjani, J. Rajendhran, et al., Adv. Mater. Lett, 6(6), 201 (2015).

    Google Scholar 

  65. A. Mathew, T. Fukuda, Y. Nagaoka, et al., PLoS One, 7(3), e32616 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. X.-Z. Sun, G. R. Williams, X.-X. Hou, et al., Carbohydr. Polym., 94(1), 147 – 153 (2013).

    PubMed  CAS  Google Scholar 

  67. G. Guo, S. Fu, L. Zhou, et al., Nanoscale, 3(9), 3825 – 3832 (2011).

    PubMed  CAS  Google Scholar 

  68. Z. Li, L. Qiu, Q. Chen, et al., Acta Biomater., 11, 137 – 150 (2015).

    PubMed  CAS  Google Scholar 

  69. J. Li, J. Ding, T. Liu, et al., Poly (lactic acid) Controlled Drug Delivery (2017).

  70. L. Moradkhannejhad, M. Abdouss, N. Nikfarjam, et al., Fibers Polym., 18(12), 2349 – 2360 (2017).

    CAS  Google Scholar 

  71. D. V. H. Thien, Vietnam J. Sci. Technol., 54(4B), 185 (2016).

    Google Scholar 

  72. A. R. Unnithan, N. A. Barakat, P. T. Pichiah, et al., Carbohydr. Polym., 90(4), 1786 – 1793 (2012).

    PubMed  CAS  Google Scholar 

  73. O. Tacar, P. Sriamornsak, and C. R. Dass, J. Pharm. Pharmacol., 65(2), 157 – 170 (2013).

    PubMed  CAS  Google Scholar 

  74. T. K. Giri, A. Thakur, A. Alexander, et al., Acta Pharm. Sinica B, 2(5), 439 – 449 (2012).

    CAS  Google Scholar 

  75. A. R.-V. Zahra Mirzai and Mohammad Barati, J. Drug Deliv. Sci. Technol., 50, 380 – 387 (2019).

    Google Scholar 

  76. M. Zhou, S. Liu, Y. Jiang, et al., Adv. Funct. Mater., 25(29), 4730 – 4739 (2015).

    CAS  Google Scholar 

  77. A. Rashidzadeh, A. Olad, D. Salari, et al., J. Polym. Res., 21(2), 344 (2014).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Kashan for supporting this work.

CONDLICT OF INGTEREST

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This work did not contain any studies with human and animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Barati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaie, Z., Barati, M. & Tokmedash, M.A. Anticancer Drug Delivery Systems Based on Curcumin Nanostructures: A Review. Pharm Chem J 54, 353–360 (2020). https://doi.org/10.1007/s11094-020-02203-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02203-0

Keywords

Navigation