Skip to main content

Advertisement

Log in

Compatibility of Medicinal and Excipient Substances in the Development of Medicinal Formulations

  • STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Attention is drawn to a contradiction associated with assessments of the compatibility of medicinal (MS) and excipient (ES) substances: that ES and MS able to react with each other chemically are regarded as incompatible, yet at the same time, the compositions of several original medicines include ES and MS which are able to undergo chemical interactions. To remove this contradiction, the concept of “potential incompatibility” of ES and MS is introduced, i.e., the ability of substances to undergo direct or indirect chemical or undesirable physical interactions which may potentially become apparent during the manufacture or storage of a medicinal formulation and influence its quality. It is emphasized that incompatibility between an ES and an MS can be regarded as existing only when it is not possible to ensure their compatibility in a medicinal formulation. Approaches to assessing the compatibility between ES and MS are discussed: stress experiments using chromatographic analysis methods; stress experiments using spectral analysis methods; experiments using thermal analysis methods and calorimetry. A systematic “step-by-step” approach to studying the compatibility between ES and MS is proposed, based on express testing of the interaction between ES and MS not only in model mixtures, but also in samples of the medicinal formulation under development. This has decisive value for drawing reliable conclusions regarding the compatibility between the ES and the MS. Known types of potentially incompatible substance important for predicting potential incompatibility between ES and MS based on the structural characteristics and chemical properties of the molecules are presented. Recommendations are made in relation to studies of the compatibility of ES and MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Examples of indirect ES-MS interactions include catalysis of hydrolysis or oxidation of the MS in the presence of an ES containing certain metal ions.

  2. Here and henceforth – compatibility of the MS-ES, ES-ES, and MS-MS types.

  3. For medicinal formulations which have to be stored at low temperature, experiments at low temperatures must also be carried out, in order to monitor the possibility that this will have adverse influences: crystallization, irreversible structural changes, etc.

  4. Actual DSC instruments measure heat flows rather than temperature differences.

  5. DSC peaks associated with polymorphous transitions and easily fusible eutectic mixtures can be identified by thermomicroscopy.

  6. For greater reliability, the spectra of the peaks of interest should also be compared.

  7. Organic acids are generally added to MF to increase MS solubility or to stabilize MS molecules which are salts of the corresponding organic acids.

References

  1. ICH M4Q. Implementation Working Group Questions & Answers (R1) (2003); http: //www.ich.org/fileadmin/PublicWeb Site/ICH Products/CTD/M4 R1 Quality/M4 Quality Questions Answers R1.pdf.

  2. S. S. Bharate, S. B. Bharate, and A. N. Bajajc, J. Excipients Food Chem., 1(3), 3 – 26 (2010).

    CAS  Google Scholar 

  3. A. S. Antipas and M. S. Landis, Solid-State Excipient Compatibility Testing in Pharmaceutical Stress Testing: Predicting Drug Degradation, S. W. Baertschi, K. M. Alsante, R. A. Reed (ed.), Informa healthcare, New York (2011), 2nd edition, pp. 419 – 458.

  4. Renu Chadha and Swati Bhandari, J. Pharm. Biomed. Anal., 87, 82 – 97 (2014).

    Article  CAS  Google Scholar 

  5. M. Szalka, J. Lubczak, D. Narog, et al., Eur. J. Pharm. Sci., 59, 1 – 11 (2014).

    Article  CAS  Google Scholar 

  6. M. C. Adeyeye, Drug-Excipient Interaction Occurrences During Solid Dosage Form Development in Preformulation in Solid Dosage Form Development, M. C. Adeyeye and H. G. Brittain (eds.), Informa Healthcare, New York (2008), pp. 357 – 436.

  7. H. G. Brittain, Methodology for the Evaluation of Chemical and Physical Interactions Between Drug Substances and Excipients in Solid Dosage Form Development, M. C. Adeyeye and H. G. Brittain (eds.), Informa Healthcare, New York (2008), pp. 437 – 476.

  8. Deliang Zhou, Product and Process Design. J. Valid. Technol., (2009).

  9. F. Nishath, M. Tirunagari, Q. Husna Kanwal, et al., J. Appl. Pharm. Sci., 01(06), 66 – 71 (2011).

    Google Scholar 

  10. A. S. Narang, D. Desai, and S. Badawy, Impact of Excipient Interactions on Solid Dosage Form Stability in Excipient Applications in Formulation Design and Drug Delivery, Ajit S. Narang and Sai H. S. Boddu (eds.), Springer, Heidelberg, et al. (2015), pp. 93 – 138.

  11. P. Patel, K. Ahir, V. Patel, et al., Pharma Innovat. J., 4(5), 14 – 20 (2015).

    Google Scholar 

  12. K. K. Hotha, S. Roychowdhury, and V. Subramanian, Am. J. Analyt. Chem., 7, 107 – 140 (2016).

    Article  CAS  Google Scholar 

  13. Jinjiang Li and Yongmei Wu, Lubricants, 2, 21 – 43 (2014).

    Article  CAS  Google Scholar 

  14. S. Ya. Skachilova, O. I. Tereshkina, I. P. Rudakova, et al., Farmatsiya, 8, 33 – 37 (2015).

    Google Scholar 

  15. Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms, FDA (2012).

  16. ICH Q1A(R2), Stability Testing of New Drug Substances and Products, (2003).

  17. T. A. Julio, I. F. Zamara, J. S. Garcia, et al., Brazilian J. Pharm. Sci., 49(4), 645 – 651 (2013).

    CAS  Google Scholar 

  18. J. Thompson, Excipient Compatibility as Predicted by ASAP. A Case Study, 1, Science of Stability, October 12 – 14, 2015, Connecticut, US (2015).

  19. W. Wollinger, R. A. da Silva, A. B. da Nobrega, et al., J. Braz. Chem. Soc., 27(5), 826 – 833 (2016).

    CAS  Google Scholar 

  20. N. A. Epshtein, Razrabotka i Registratsiya Lek. Sredstv, 3(16), 54 – 68 (2016).

    Google Scholar 

  21. N. Wyttenbach, C. Birringer, J. Alsenz, et al., Pharm. Dev. Technol., 10(4), 499 – 505 (2005).

    Article  CAS  Google Scholar 

  22. Wei-Qin Tong and G. G. Z. Zhang, Stability and Excipient Compatibility Studies, Integrated Drug Product Development Process (3 day-course), University of Utah, July 17 – 19 (2006).

  23. U. Uendlandt, Thermal Analysis Methods [Russian trsnslation], V. A. Stepanov and V. A. Bershtein (eds.), Mir, Moscow (1978).

  24. H. Leuenberger, W. Becher, Pharm. Acta Helv., 50(4), 88 – 91 (1975).

    CAS  PubMed  Google Scholar 

  25. S. Bohanec, T. Rozman Peterka, and P. Blazik, Acta Chim. Slov., 57, 895 – 903 (2010).

    CAS  PubMed  Google Scholar 

  26. S. I. Farag Badawy and M. A. Hussain, J. Pharm. Sci., 96(5), 948 – 959 (2007).

    Article  Google Scholar 

  27. Leo Gu, R. G. Stricley, L-Hua Chi, and Z. T. Chowhan, Pharm. Res., 7(4), 379 – 383 (1990).

    Article  Google Scholar 

  28. T. R. Peterka, R. Grahek, and J. Hren, J. Pharm. Biomed. Anal., 110, 67 – 75 (2015).

    Article  Google Scholar 

  29. B. Stanisz, Drug Res., 62(3), 189 – 193 (2005).

    CAS  Google Scholar 

  30. Y. Wu, M. Dali, A. Gupta, and K. Raghavan, Pharm. Dev. Technol., 14(5), 556 – 564 (2009).

    Article  CAS  Google Scholar 

  31. J. Larsen, C. Cornett, J. W. Jaroszewski, et al., J. Pharm. Biomed. Anal., 49, 11 – 17 (2009).

    Article  CAS  Google Scholar 

  32. Compositions Comprising Amlodipine and Bisoprolol, Patente EP 2344141 A2, Eingetragen 30, Sept. 2009, Veroffentlichungsdatum, 20 Juli (2011).

  33. H. Yu, C. Cornett, J. Larsen, et al., J. Pharm. Biomed. Anal., 53, 745 – 750 (2010).

    Article  CAS  Google Scholar 

  34. Y. Wu, J. Levons, A. S. Narang, et al., AAPS Pharm. Sci. Tech., 12(4), 1248 – 1263 (2011).

    Article  CAS  Google Scholar 

  35. M. N. Nassar, V. N. Nesarikar, R. Lozano, et al., Pharm. Develop. Technol., 9, 189 – 195 (2004).

    Article  CAS  Google Scholar 

  36. N. Fathima, T. Mamatha, H. K. Qureshi, et al., J. Applied Pharm. Sci., 01(06), 66 – 71 (2011).

    Google Scholar 

  37. D. Desai, S. Kothari, and M. Huang, Int. J. Pharm., 354, 77 – 81 (2008).

    Article  CAS  Google Scholar 

  38. M. Ma, A. DiLollo, R. Mercuri, et al., J. Chrom. Sci., 40, 170 – 177 (2002).

    Article  CAS  Google Scholar 

  39. D. S. Bindra, D. Stein, P. Pandey, et al., Pharm. Dev. Technol., 19(3), 85 – 289 (2014).

    Article  Google Scholar 

  40. R. Govindarajan, M. Landis, B. Hancock, et al., AAPS Pharm. Sci. Tech., 16(2), 354 – 363 (2015).

  41. Zeneth Chemical Degradation Prediction Software; URL: http: //www.lhasalimited.org/products/zeneth.htm.

  42. S. W. Baertschi, Patterns and Pathways: Using Chemistry to Guide the Characterization of Degradation Products, MA: COSMOS, Boston (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Épshtein.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 52, No. 7, pp. 50 – 60, July, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Épshtein, N.A. Compatibility of Medicinal and Excipient Substances in the Development of Medicinal Formulations. Pharm Chem J 52, 648–657 (2018). https://doi.org/10.1007/s11094-018-1876-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1876-4

Keywords

Navigation