Skip to main content
Log in

Kinetics of Ibuprofen Release From Magnetic Nanoparticles Coated with Chitosan, Peg and Dextran

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In this study, iron oxide magnetic nanoparticles (MNPs) were synthesized and their surfaces were functionalized with various polymers. Then, ibuprofen was attached and the kinetics of drug release from this system at various temperatures and pH was studied. The nanoparticles were synthesized by the Massart co-precipitation method. Their surfaces were functionalized with chitosan, PEG or dextran. The concentration of released ibuprofen was measurement in vitro by spectrofluorometric methods. The mechanism of drug release from the carriers was analyzed in the Korsmeyer – Peppas model. According to the results, the amount of ibuprofen released depends on the type of material by which MNPs are coated. Nanoparticles coated with dextran seem to be the most promising material for ibuprofen release. In the Korsmeyer – Peppas model, the values of diffusion exponent n characterize the mechanism of drug release. The values obtained for dextran and PEG point to the Fickian diffusion, while the diffusion mechanism for chitosan is anomalous. These results show the possibility of practical use of the material synthesized in living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. M. G. C. Dias, A. Hussain, A. S. Marcos, et al., Biotechnol. Adv., 29, 142 – 155 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. S. A. Jadhav and S. V. Patil, Front. Mater. Sci., 8, 193 – 198 (2014).

    Article  Google Scholar 

  3. W. Wu, Q. He, and C. Jiang, Nanoscale Res. Lett., 3, 397 – 415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. S. S. R. Kumar, Nanotechnologies for the Life Sciences, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2005).

    Google Scholar 

  5. S. Bucak, B. Yavuztürk, and A. D. Sezer, in Recent Advances in Novel Drug Carrier Systems, A. D. Sezer (Ed.), Intech, Rijeka (2012), pp. 165 – 200.

  6. C. Lu and P. Liu, J. Mater. Sci. Mater. Med., 23, 393 – 398 (2011).

    Article  CAS  Google Scholar 

  7. A. Owczarczak and G. Schroeder, Chemical Functionalization of Surfaces for Nanotechnology, Cursiva, Kostrzyn (2011).

    Google Scholar 

  8. D. Narayanan, M. G. Geena, H. Lakshmi, et al., Nanomedicine, 9(6), 818 – 828 (2013).

    CAS  PubMed  Google Scholar 

  9. N. L. Shimanovskii, Russ. J. Gen. Chem., 84, 391 – 406 (2014).

    Article  CAS  Google Scholar 

  10. C. S. S. R. Kumar and F. Mohammad, Adv. Drug Deliv. Rev., 63, 789 – 808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. G. Hadjipanayis, M. J. Bonder, S. Balakrishnan, et al., Small, 4, 1925 – 1929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Wei, N. Insin, J. Lee, et al., Nano Lett., 12, 22 – 25 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. K. M. Gregorio-Jauregui, M. G. Pindea, J. E. Rivera-Salinas, et al., J. Nanomater., ID 813958 (2012).

  14. S. Honary, P. Ebrahimi, H. A. Rad, et al., Int. Nano Lett., 3, 48 (2013).

    Article  CAS  Google Scholar 

  15. C. Tassa, S. Y. Shaw, and R. Weissleder, Acc. Chem. Res., 44, 842 – 852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Tao, H. Dou, and K. Sun, Colloids Surf. A, 290, 70 – 76 (2006).

    Article  CAS  Google Scholar 

  17. C. Ravikumar, S. Kumar, and R. Bandyopadhyaya, Colloids Surf. A, 403, 1 – 6 (2012).

    Article  CAS  Google Scholar 

  18. M. Malhorta, C. Lane, and C. Tomaro-Duchesneau, Int. J. Nanomed., 6, 485 – 494 (2011).

    Google Scholar 

  19. D. Dorniani, A. U. Kura, M. Z. B. Hussein, et al., J. Mater. Sci. Mater. Med., 49, 8487 – 8497 (2014).

    Article  CAS  Google Scholar 

  20. M. V. Yigit, A. Moore, and Z. Medarova, Pharm. Res., 29, 1180 – 1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Song, Z. Zhi, and J. C. Pickup, Int. J. Nanomed., 9, 2127 – 2136 (2014).

    Google Scholar 

  22. S. Laurent, D. Forge, M. Port, et al., Chem. Rev., 108, 2064 – 2110 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. A. H. Najafabadi, M. Abdouss, and S. Faghihi, Mater. Sci. Eng. C, 41, 91 – 99 (2014).

    Article  CAS  Google Scholar 

  24. S. Jiang, A. A. Eltoukhy, K. T. Love, et al., Nano Lett., 13, 1059 – 1064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P. Costa and J. M. Sousa Lobo, Eur. J. Pharm. Sci ., 13, 123 – 133 (2001).

  26. P. L. Ritger and N. A. Peppas, J. Control. Release, 5, 37 – 42 (1987).

    Article  CAS  Google Scholar 

  27. T. Higuchi, J. Pharm. Sci., 52, 1145 – 1149 (1963).

    CAS  Google Scholar 

  28. P. L. Ritger and N. A. Peppas, J. Control. Release, 5, 23 – 36 (1987).

    Article  CAS  Google Scholar 

  29. J. J. Sahlin and N. A. Peppas, Int. J. Pharm., 57, 169 – 172 (1989).

    Article  Google Scholar 

  30. R. Massart, IEEE Trans . Magn., 17, 1247 – 1248 (1981).

  31. M. Miya, R. Iwamoto, S. Yoshikawa, et al., Int. J. Biol. Macromol., 2, 323 – 324 (1980).

    Article  CAS  Google Scholar 

  32. X. Huang and C. S. Brazel, J. Control. Release, 73, 121 – 136 (2001).

    Article  CAS  Google Scholar 

  33. A. Akbarzadeh, N. Zarghami, R. Mohammad, et al., Int. J. Nanomed.., 7, 511 – 526 (2012).

    CAS  Google Scholar 

  34. J. L. Arias, M. López-Viota M, J. López-Viota, et al., Int. J. Pharm., 365, 131 – 135 (2009).

  35. A. des Rieux, V. Fievez, M. Garinot, et al., J. Control. Release, 116 (1), 1 – 27 (2006).

  36. A. Figuerola, R. Di Corato, L. Manna, et al., Pharmacol. Res., 62, 126 – 143 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. P. P. Grassi-Schultheiss, F. Heller, and J. Dobson, Biometals, 10, 351 – 355 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. V. I. Shubayev, T. R. Pisanic, and S. H. Jin, Adv. Drug Deliv. Rev., 61, 467 – 477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Gronczewska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gronczewska, E., Defort, A. & Kozioł, J.J. Kinetics of Ibuprofen Release From Magnetic Nanoparticles Coated with Chitosan, Peg and Dextran. Pharm Chem J 50, 491–499 (2016). https://doi.org/10.1007/s11094-016-1475-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-016-1475-1

Keywords

Navigation