Skip to main content
Log in

Lyophilization of liposomal drug forms (Review)

  • DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Lyophilization is a promising approach to ensuring the long-term stability of liposomes. Decades of studies in this field have revealed various cryoprotective mechanisms such as water replacement and formation of a cryoprotector matrix. Much progress has been made in obtaining highly stable liposomes after lyophilization based on optimization of the formulation and process parameters. This paper reviews cryoprotective mechanisms, their parameters affecting the cryoprotective effect, and techniques used most often in the studies. The parameters are discussed with respect to two aspects, namely, formulation factors (choice of the lipid bilayer composition, vesicle size, selection of cryoprotectors, dry mass ratio of cryoprotector to lipid, distribution of cryoprotector on both sides of the lipid bilayer) and processing factors (freezing protocols, drying protocols, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mishra, B. B. Patel, and S. Tiwari, Nanomed.: Nanotechnol., Biol., Med., 6, 9 – 24 (2010).

    Article  CAS  Google Scholar 

  2. Y. Shamay, L. Adar, G. Ashkenasy, and D. Ayelet, Biomaterials, 32(5), 1377 – 1386 (2011).

    Article  PubMed  CAS  Google Scholar 

  3. W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi, Adv. Drug. Delivery Rev., 58(15), 1688 – 1713 (2006).

    Article  CAS  Google Scholar 

  4. J. H. Crowe, L. M. Crowe, A. E. Oliver, et al., Cryobiology, 43, 89 – 105 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. E. A. Boss, R. M. Filho, and E. C. Vasco de Toledo, Chem. Eng. Process., 43(12), 1475 – 1485 (2004).

    Article  CAS  Google Scholar 

  6. T. Jensen, S. Halvorsen, H. C. Godal, and O. H. Skjonsberg, Thromb. Res., 105(6), 499 – 502 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. V. P. Torchilin and V. Weissing, Liposomes, Oxford University Press, Boston (2003), pp. 155 – 162.

    Google Scholar 

  8. S. C. Tsinontides, P. Rajniak, W. A. Hunke, et al., Int. J. Pharm., 280(1 – 2), 1 – 16 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. J. Wolfe and G. Bryant, Cryobiology, 39, 103 – 129 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. K. Miyajima, Adv. Drug Delivery Rev., 24, 151 – 159 (1997).

    Article  CAS  Google Scholar 

  11. C. Chen, D. Han, C. Cai, and X. Tang, J. Controlled Release, 142, 299 – 311 (2010).

    Article  CAS  Google Scholar 

  12. A. A. Boldyrev, Biochemistry of Membranes [in Russian], Vysshaya Shkola, Moscow (1987), pp. 29 – 61.

    Google Scholar 

  13. L. M. Crowe, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 131, 505 – 513 (2002).

    Article  Google Scholar 

  14. A. Heikal, K. Box, A. Rothnie, et al., Cryobiology, 58, 37 – 44 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. B. Stark, G. Pabst, and R. Prassl, Eur. J. Pharm. Sci., 41, 546 – 555 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. W. F. Wolkers, H. Oldenhof, M. Alberda, and F. A. Hoekstra, Biochim. Biophys. Acta, 1379, 83 – 96 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. L. M. Crowe and J. H. Crowe, Biochim. Biophys. Acta, 946, 193 – 201 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. J. H. Crowe, F. A. Hoekstra, K. H. Nguyen, and L. M. Crowe, Biochim. Biophys. Acta, 1280, 187 – 196 (1996).

    Article  PubMed  Google Scholar 

  19. J. H. Crowe, A. E. Oliver, F. A. Hoekstra, and L. M. Crowe, Cryobiology, 35, 20 – 30 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. W. Q. Sun, A. C. Leopold, L. M. Crowe, and J. H. Crowe, Biophys. J., 70, 1769 – 1776 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. H. Nagase, H. Ueda, and M. Nakagaki, Biochim. Biophys. Acta, 1328, 197 – 206 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. K. Kawai and T. Suzuki, Pharm. Res., 24, 1883 – 1890 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. L. M. Crowe, C. Womersley, J. H. Crowe, et al., Biochim. Biophys. Acta, 861, 131 – 140 (1986).

    CAS  Google Scholar 

  24. N. Jovanovic, A. Bouchard, G. W. Hofland, et al., Eur. J. Pharm. Sci., 27(4), 336 – 345 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. T. D. Madden, M. B. Bally, M. J. Hope, et al., Biochim. Biophys. Acta, 817, 67 – 74 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. C. T. Kh. Ien, V. I. Pozdeev, G. A. Meerovich, et al., Ross. Bioter. Zh., 2(9), 105 – 107 (2010).

    Google Scholar 

  27. E. V. Tazina, E. V. Ignat’eva, A. P. Polozkova, et al., Khim.-farm. Zh., 12, 30 – 35 (2008).

    Google Scholar 

  28. M. A. Kortava, A. P. Polozkova, N. A. Tomsahevskaya, et al., Ross. Bioter. Zh., 1, 75 – 76 (2007).

    Google Scholar 

  29. A. P. Polozkova, M. A. Kortava, N. A. Tomashevskaya, et al., Ross. Bioter. Zh., 1, 78 – 79 (2007).

    Google Scholar 

  30. A. V. Lantsova, N. A. Oborotova, N. M. Peretolchina, et al., Sib. Onkol. Zh., 2(14), 58 – 59 (2005).

    Google Scholar 

  31. A. V. Lantsova, A. P. Polozkova, N. M. Peretolchina, et al., Ross. Bioter. Zh., 4, 19 – 23 (2004).

    Google Scholar 

  32. L. M. Hays, J. H. Crowe, W. Wolkers, and S. Rudenko, Cryobiology, 42, 88 – 102 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. W. W. Sulkowski, D. Pentak, K. Nowak, and A. Sulkowska, J. Mol. Struct., 744 – 747, 737 – 747 (2005).

    Article  Google Scholar 

  34. V. Vincourt, L. Nguyen, J.-C. Chaumeil, and G. Dumortier, Cryobiology, 60, 262 – 270 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. H. Komatsu, H. Saito, S. Okada, et al., Chem. Phys. Lipids, 113, 29 – 39 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. J. H. Crowe and L. M. Crowe, Biochim. Biophys. Acta, 939, 327 – 334 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. M. Ausborn, H. Schreier, G. Brezesinski, et al., J. Controlled Release, 30, 105 – 116 (1994).

    Article  CAS  Google Scholar 

  38. S. Ohtake, C. Schebor, S. P. Palecek, and J. J. de Pablo, Biochim. Biophys. Acta, 1713, 57 – 64 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. H. Ohvo-Rekila, B. Ramstedt, P. Leppimaki, and J. P. Slotte, Prog. Lipid Res., 41, 66 – 97 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Barenholz, Prog. Lipid Res., 41, 1 – 5 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. W. C. Mobley and H. Schreier, J. Controlled Release, 31, 73 – 87 (1994).

    Article  CAS  Google Scholar 

  42. D. Bach and E. Wachtel, Biochim. Biophys. Acta, 1610, 187 – 197 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. J. M. Boggs, Biochim. Biophys. Acta, 906, 353 – 404 (1987).

    Article  PubMed  CAS  Google Scholar 

  44. S. Ohtake, C. Schebor, and J. J. de Pablo, Biochim. Biophys. Acta, 1758, 65 – 73 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. A. V. Popova and D. K. Hincha, Biophys. J., 93, 1204 – 1214 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. A. M. Samuni, A. Lipman, and Y. Barenholz, Chem. Phys. Lipids, 105, 121 – 134 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. V. Torchilin, Drug Delivery Rev., 24, 301 – 313 (1997).

    Article  CAS  Google Scholar 

  48. V. Torchilin, Eur. J. Pharm. Biopharm., 71, 431 – 444 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. T. Yang, F. D. Cui, M. K. Choi, et al., Int. J. Pharm., 338, 317 – 326 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. W. L. J. Hinrichs, F. A. Mancenido, N. N. Sanders, et al., Int. J. Pharm., 311, No. 1 – 2, 237 – 244 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. W. L. Hinrichs, N. N. Sanders, S. C. De Smedt, et al., J. Controlled Release, 103, 465 – 479 (2005).

    Article  CAS  Google Scholar 

  52. N. Berger, A. Sachse, J. Bender, et al., Int. J. Pharm., 223, 55 – 68 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. E. Pupo, A. Padron, E. Santana, et al., J. Controlled Release, 104, 379 – 396 (2005).

    Article  CAS  Google Scholar 

  54. E. M. Van Bommel and D. J. Crommelin, Int. J. Pharm., 22, 299 – 310 (1984).

    Article  Google Scholar 

  55. D. G. Gurevich, I. G. Meerovich, G. A. Meerovich, et al., Ross. Bioter. Zh., 2, 45 – 49 (2007).

    Google Scholar 

  56. A. Hottot, S. Vessot, and J. Andrieu, Chem. Eng. Process., 46(7), 666 – 674 (2007).

    Article  CAS  Google Scholar 

  57. T. Arakawa, S. J. Prestrelski,W. C. Kenney, and J. F. Carpenter, Adv. Drug Delivery, 46, 307 – 326 (2001).

    Article  CAS  Google Scholar 

  58. S. Zhai, R. Taylor, R. Sanches, and N. K. H. Slater, Chem. Eng. Sci., 58(11), 2313 – 2323 (2003).

    Article  CAS  Google Scholar 

  59. M. K. Lee, M. Y. Kim, S. Kim, and J. Lee, J. Pharm. Sci., 98(12), 4808 – 4817 (2009).

    Article  PubMed  CAS  Google Scholar 

  60. S. A. Velardi and A. A. Barresi, Chem. Eng. Res. Des., 86(1), 9 – 22 (2008).

    Article  CAS  Google Scholar 

  61. L. F. Siow, T. Rades, and M. H. Lim, Cryobiology, 55, 210 – 221 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. Yu. M. Krasnopol’skii, A. E. Stepanov, and V. I. Shvets, Biofarm. Zh., 3, 18 – 29 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 46, No. 4, pp. 29 – 34, April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arshinova, O.Y., Sanarova, E.V., Lantsova, A.V. et al. Lyophilization of liposomal drug forms (Review). Pharm Chem J 46, 228–233 (2012). https://doi.org/10.1007/s11094-012-0768-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-012-0768-2

Key words

Navigation