Skip to main content
Log in

Assessment of TBC Oxidation-Induced Degradation Using Compression Tests

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Compression tests at room temperature are used to estimate the critical strain to spallation of EBPVD thermal barrier coating deposited on Ni based single crystals for blades used in aero-engines. The observation of fracture surfaces allows for investigating the location of delamination events leading to spallation, the eventual porosity at bond coat–alumina interface and kinetics of damage evolution. The effect of isothermal oxidation at 1,100 °C is presented for standard or low sulfur AM1 superalloy, and coating process variants. The degradation is shown to depend on the thermal–mechanical loading and varies from isothermal oxidation, cyclic oxidation and thermal–mechanical fatigue with hold time. These observations are consistent with the damage observed in blades in engine tests or in service. These tests are a useful complement to standard cyclic oxidation tests to identify engineering lifetime models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Rémy and J. -Y. Guédou, in Materials for Advanced Power Engineering 2010, eds. J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. K. Jülich (Palais des Congrès, Liège, 2010), pp. 596–611.

  2. G. Cailletaud, J. -L. Chaboche, S. Forest, and L. Rémy, La Revue de Métallurgie-CIT/Science et Génie des Matériaux, 165, 1–12 (2003).

  3. L. Rémy, A. Alam, and A. Bickard, in Thermomechanical Fatigue Behavior of Materials, ASTM STP 1428, eds. M. A. Mc Gaw, S. Kalluri, J. Bressers, and S. D. Peteves, Vol. 4 (American Society for Testing and Materials, West Conshohocken, 2003), pp. 98–111.

  4. A. Bickard and L. Rémy, in High Temperature Surface Engineering, eds. J. R. Nicholls, D. S. Rickerby and D. Allen (The Institute of Materials, London, 2000), pp. 183–198.

    Google Scholar 

  5. J. L. Smialek, Acta Materialia 51, 469 (2003).

    Article  Google Scholar 

  6. D. Poquillon and D. Monceau, Oxidation of Metals 59, 409 (2003).

    Article  Google Scholar 

  7. A. G. Evans, M. Y. He, and J. W. Hutchinson, Progress in Materials Science 46, 249 (2001).

    Article  Google Scholar 

  8. X. Chen, J. W. Hutchinson, M. Y. He, and A. G. Evans, Acta Materialia 51, 2017 (2003).

    Article  Google Scholar 

  9. M. E. Walter, B. Onipede, W. Soboyejo, and C. Mercer, Journal of Engineering Materials and Technology 122, 333 (2000).

    Article  Google Scholar 

  10. L. Xie, Y. Sohn, E. H. Jordan, and M. Gell, Surface and Coatings Technology 176, 57 (2003).

    Article  Google Scholar 

  11. C. Guerre, L. Rémy, and R. Molins, Materials at High Temperature 20, 481 (2003).

    Google Scholar 

  12. J. L. Malpertu and L. Rémy, Metallurgical Transactions 21A, 389 (1990).

    Article  Google Scholar 

  13. E. Fleury and L. Rémy, Metallurgical and Materials Transactions 25A, 99 (1994).

    Article  Google Scholar 

  14. L. Rémy, in Comprehensive Structural Integrity, eds. I. Milne, R. O. Ritchie, and B. Karihaloo, Vol. 5; Creep and High-Temperature Failure, ed. A. Saxena (Elsevier, Amsterdam, 2003), pp. 113–200.

  15. L. Rémy, in CorrosionDeformation Interactions, eds. T. Magnin, J. M. Gras, (les Editions de Physique, Les Ulis, 1993), pp. 425–460.

  16. J. Reuchet and L. Rémy, Metallurgical Transactions 14A, 141 (1983).

    Article  Google Scholar 

  17. M. Reger and L. Rémy, Metallurgical Transactions 19A, 2259 (1988).

    Article  Google Scholar 

  18. E. Chateau and L. Rémy, Materials Science and Engineering A 527, 1655 (2010).

    Article  Google Scholar 

  19. L. Rémy, N. Haddar, A. Alam, A. Koster, and N. Marchal, Materials Science and Engineering A 468–470, 40 (2007).

    Article  Google Scholar 

  20. E. Chataigner and L. Rémy, in Thermomechanical fatigue of coated and bare superalloy single crystals, ASTM STP 1263, eds. M. J. Verrilli and M. G. Castelli (ASTM, Philadelphia, 1996), pp. 3–23.

  21. C. Guerre, R. Molins, and L. Rémy, Materials at High Temperature 17, 197 (2000).

    Article  Google Scholar 

  22. I. Rouzou, R. Molins, L. Rémy, and F. Jomard, Materials Science Forum 461–464, 101 (2004).

    Article  Google Scholar 

  23. R. Molins, I. Rouzou, L. Rémy, K. Le Biavant-Guerrier, and F. Jomard, Materials at High Temperatures 22, 359 (2005).

    Google Scholar 

  24. M. Chieux, R. Molins, L. Rémy, C. Duhamel, M. Sennour, and Y. Cadoret, Materials at High Temperatures 26, 187 (2009).

    Google Scholar 

  25. M. Chieux, C. Duhamel, R. Molins, F. Jomard, L. Rémy, and J. Y. Guedou, Oxidation of Metals (2012). doi:10.1007/s11085-013-9428-5.

  26. F. Toscan, L. Antoni, M. Dupeux, and A. Galerie, Materials at High Temperatures 20, 543 (2003).

    Google Scholar 

  27. M. Caliez, F. Feyel, S. Kruch, and J. L. Chaboche, Surface and Coatings Technology 157, 103 (2002).

    Article  Google Scholar 

  28. L. Chirivi and J. W. Nicholls, in HTPCM’8, 2012, 8th International Symposium on High Temperature Corrosion and Protection of Materials, Les Embiez, France, 20–25 May 2012.

  29. H. E. Evans, Materials Science and Technology 12, 1089 (1988).

    Google Scholar 

  30. Z. Suo, D. V. Kubair, A. G. Evans, D. R. Clarke, and V. K. Tolpygo, Acta Materialia 51, 959 (2003).

    Article  Google Scholar 

  31. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 323 (1992).

    Article  Google Scholar 

  32. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüssner, and K. B. Alexander, Materials Science and Engineering A245, 201 (1998).

    Article  Google Scholar 

  33. D. Pan, M. W. Chen, P. K. Wright, and K. J. Hemker, Acta Materialia 51, 2205 (2003).

    Article  Google Scholar 

  34. P. K. Wright, Materials Science and Engineering A245, 391 (1998).

    Google Scholar 

  35. C. Courcier, V. Maurel, L. Rémy, S. Quilici, I. Rouzou, and A. Phelippeau, Surface and Coatings Technology 205, 3763 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Safran–Snecma for providing single crystal specimens as well as coating after specimen machining and for financial support of part of this study. They are in particular indebted to Jean-Yves Guédou for his continuous interest in this work. The experimental work was carried out during completion of the theses of C. Guerre and I. Rouzou that were supported by Snecma and the French Ministry of Research (C. Guerre) and the French Ministry of Defense (I. Rouzou) respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rémy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rémy, L., Guerre, C., Rouzou, I. et al. Assessment of TBC Oxidation-Induced Degradation Using Compression Tests. Oxid Met 81, 3–15 (2014). https://doi.org/10.1007/s11085-013-9416-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9416-9

Keywords

Navigation