Skip to main content

Advertisement

Log in

Detection of Breakaway Oxidation with Acoustic Emission During Zirconium Oxide Scale Growth

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Breakaway detection was performed with acoustic emission on Zy-4 sample oxidized at 700 °C under Ar/O2 atmosphere. After breakaway, 42 % of hits had an energy value greater than a transition energy set to 0.3 fJ. These events were associated to the cracking process in the oxide layer. The transition energy was ten times smaller than that obtained in the Ti/TiO2 system. The difference was related to the fissuring mode in the oxide scale: the cracks being located at the metal oxide interface in the case of titanium oxide and in the oxide scale for the Zy-4 case. The Zy-4 oxide scale was stratified with numerous small and wavy lateral fissures, which is contrary to the titanium oxide case where the lateral cracks were periodic, straight and continuous through the oxide layer. Acoustic emission signatures of the small decohesions in the oxide layer of Zy-4 appeared to be less energetic than the interfacial debonding occurring in the Ti/TiO2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.-T. Tran, M. Boinet, A. Galerie and Y. Wouters, Corrosion Science 52, 2365 (2010).

    Article  CAS  Google Scholar 

  2. B. Raj, B. B. Jha, A. S. Khanna and D. K. Bhattacharya, International Journal of Pressure Vessels and Piping 45, 301 (1991).

    Article  CAS  Google Scholar 

  3. H. Jonas and J. A. Golczewski, Journal of Nuclear Materials 120, 272 (1984).

    Article  CAS  Google Scholar 

  4. C.-H. Xu, W. Gao and S. Li, Corrosion Science 43, 671 (2001).

    Article  CAS  Google Scholar 

  5. B. P. Mohanty and D. A. Shores, Corrosion Science 46, 2893 (2004).

    Article  CAS  Google Scholar 

  6. W. Christl, A. Rahmel and M. Schütze, Materials Science and Engineering 87, 289 (1987).

    Article  CAS  Google Scholar 

  7. D. Renusch and M. Schütze, Materials at High Temperatures 22, 35 (2005).

    Article  CAS  Google Scholar 

  8. M. Schütze, D. Renusch and M. Schorr, Materials at High Temperatures 22, 113 (2005).

    Article  Google Scholar 

  9. A. Donchev, H. Fietzek, V. Kolarik, D. Renusch and M. Schütze, Materials at High Temperatures 22, 139 (2005).

    Article  CAS  Google Scholar 

  10. K. Yanagihara, D. Renusch, M. Röhrig and M. Schütze, Materials Science Forum 522–523, 497 (2006).

    Article  Google Scholar 

  11. M. Walter, M. Schütze and A. Rahmel, Oxidation of Metals 40, 37 (1993).

    Article  CAS  Google Scholar 

  12. M. G. Alvarez, P. Lapitz and J. Ruzzante, Corrosion Science 50, 3382 (2008).

    Article  CAS  Google Scholar 

  13. Y. Wouters, A. Galerie and J.-P. Petit, Solid State Ionics 104, 89 (1997).

    Article  CAS  Google Scholar 

  14. A. Galerie, Y. Wouters, M. Pijolat, F. Valdivieso, M. Soutelle, T. Magnin, D. Delafosse, C. Bosch and B. Bayle, Advanced Engineering Materials 3, 555 (2001).

    Article  CAS  Google Scholar 

  15. J. Ehlers, D. J. Young, E.-J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  CAS  Google Scholar 

  16. A. Galerie, S. Henry, Y. Wouters, J.-P. Petit, M. Mermoux, C. Chemarin, and L. Antoni, Understanding the breakaway corrosion of ferritic stainless steels in water vapour, in Life Time Modelling of High Temperature Corrosion Processes, eds. M. Schütze, W. J. Quadakkers and J. Nicholls, Vol 34 (UK, 2001), p. 194.

  17. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.-P. Petit and L. Antoni, Materials at High Temperatures 22, 105 (2005).

    Article  CAS  Google Scholar 

  18. S. Henry, A. Galerie and L. Antoni, Materials Science Forum 369–372, 353 (2006).

    Google Scholar 

  19. Y. Wouters, G. Bamba, A. Galerie, M. Mermoux and J.-P. Petit, Materials Science Forum 461–464, 839 (2004).

    Article  Google Scholar 

  20. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser and W. J. Quadakkers, Material and Corrosion 55, 825 (2004).

    Article  CAS  Google Scholar 

  21. J. H. Baek and Y. H. Jeong, Journal of Nuclear Materials 372, 152 (1984).

    Article  Google Scholar 

  22. P. Bossis, F. Lefebre, P. Barberis and A. Galerie, Materials Science Forum 369–372, 255 (2001).

    Article  Google Scholar 

  23. D. Ciosmak, C. Valot, M. Lallement and G. Bertrand, Materials Science Forum 369–372, 523 (2004).

    Google Scholar 

  24. S. Sulistijono, A. Bouden, M. Cherfaoui, G. Beranger, and M. Lambertin, Journal de Physique IV 3, C9-439 (1993).

    Google Scholar 

  25. J.-P. Petit, M. Mermoux, Y. Wouters, A. Galerie and C. Chemarin, Materials Science Forum 461–464, 681 (2004).

    Article  Google Scholar 

  26. Norm NF EN 1330-9.

  27. Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions. OECD Report NEA No. 6846 (2009).

  28. B. Cox, Oxidation of Zirconium and its Alloys. Advances in Corrosion Science and Technology (Plenum Press, 1976).

  29. P. Sarrazin, F. Motte and J. Besson, Journal of Less-Common Metal 59, 111 (1978).

    Article  CAS  Google Scholar 

  30. F. Nardou, P. Raynaud and M. Billy, Journal de Chimie Physique et de Physico-Chimie Biologique 81, 433 (1984).

    Google Scholar 

  31. V. I. Dyachkov, Journal de Chimie physique 88, 233 (1991).

    CAS  Google Scholar 

  32. P. Kofstad, in High Temperature Corrosion, (Elsevier Applied Science, London, 1987), pp. 297–299.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Parry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parry, V., Tran, MT. & Wouters, Y. Detection of Breakaway Oxidation with Acoustic Emission During Zirconium Oxide Scale Growth. Oxid Met 79, 279–288 (2013). https://doi.org/10.1007/s11085-012-9355-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9355-x

Keywords

Navigation