Skip to main content
Log in

Effect of Sulfur Partial Pressures on Oxidation Behavior of Fe–Ni–Cr Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Fe–Ni–Cr alloys containing different contents of Si with and without pre-formed oxide scale at the surface were tested in oxidation environments at 1,050 °C with varied sulfur partial pressures. The oxide-scale growth on Fe–Ni–Cr alloys was accelerated by increasing sulfur partial pressures in the oxidizing-carburizing environments. This accelerated oxidation was characterized by the formation of plate-shaped MnCr2O4 spinel crystallites and the nodular clusters at the site of scale spallation. Pre-oxidized Fe–Ni–Cr alloys generally did not suffer from sulfur attack because of excellent protection of pre-formed oxide scale. Scale spallation and sulfur attack were found only on high-Si alloy subjected to the maximum sulfur potential, which was attributed to accelerated oxidation and selective oxidation and sulfidation at the sites where oxide scale spallation had occurred. For bare alloys in absence of pre-formed oxide layers, scale spallation was found to occur at lower level of sulfur potential on low-Si alloy than on high-Si alloy. A higher content of Si is necessary for the formation of protective silica sub-layer, which is believed to be the main cause of the difference in scale spallation observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. D. R. G. Mitchell, D. J. Young, and W. Kleemann, Materials and Corrosion 49, 231 (1998).

    Article  CAS  Google Scholar 

  2. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  CAS  Google Scholar 

  3. T. A. Ramanarayanan and C. M. Chun, Metal Dusting Resistance Alloys, Patent No. US 6692,838 B2, Februrary 17, 2004.

  4. L. Benum, M. Oballa, S. Petrone, and W. Chen, Preo-oxidized Surface on a Stainless Steel Matrix, Patent No. US 6824,883, April 14, 2005.

  5. H. Li, Y. Zheng, L. W. Benum, M. Oballa, and W. Chen, Corrosion Science 51, 2336 (2009).

    Article  CAS  Google Scholar 

  6. H. J. Grabke, D. Moszynski, E. M. Müller-Lorenz, and A. Schneider, Surface Interface Analysis 34, 369 (2002).

    Article  CAS  Google Scholar 

  7. J. Barnes, J. Corish, and J. F. Norton, Oxidation of Metals 25, 333 (1986).

    Article  Google Scholar 

  8. T. A. Ramanarayanan, Materials Science and Engineering 87, 113 (1987).

    Article  CAS  Google Scholar 

  9. S. Mrowec, Oxidation of Metals 44, 177 (1995).

    Article  CAS  Google Scholar 

  10. H. Li and W. Chen, Corrosion Science 52, 2481 (2010).

    Article  CAS  Google Scholar 

  11. J. A. Kneeshaw, I. A. Menzies, and J. F. Norton, Werksoffe und Korrosion 38, 473 (1987).

    Article  CAS  Google Scholar 

  12. M. A. Harper and J. P. Cotner, Oxidation of Metals 53, 427 (2000).

    Article  CAS  Google Scholar 

  13. D. J. Baxter and K. Natesan, Oxidation of Metals 31, 305 (1989).

    Article  CAS  Google Scholar 

  14. H. Xu, M. G. Hocking, and P. S. Sidky, Oxidation of Metals 41, 81 (1994).

    Article  CAS  Google Scholar 

  15. A. Rahmel, M. Schorr, A. Velasco-Tellez and A. Pelton, Oxidation of Metals 27, 199 (1987).

    Article  CAS  Google Scholar 

  16. M. F. Stroosnijder, V. Guttmann, T. Fransen and J. H. W. de Wit, Oxidation of Metals 33, 371 (1990).

    Article  CAS  Google Scholar 

  17. O. K. Chopar and K. Natesan, High Temperature Science 9, 243 (1977).

    Google Scholar 

  18. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).

    Article  CAS  Google Scholar 

  19. J. S. Dunning, D. E. Alman and J. C. Rawers, Oxidation of Metals 57, 409 (2002).

    Article  CAS  Google Scholar 

  20. L. Mikkelsen, S. Linderoth and J. B. Bilde-Sprensen, Materials Science Forum 461–464, 117 (2004).

    Article  Google Scholar 

  21. T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, 125 (2004).

    Article  CAS  Google Scholar 

  22. Y. Liu, W. Wei, L. Benum, M. Oballa, M. Gyorffy and W. Chen, Oxidation of Metals 73, 207 (2010).

    Article  CAS  Google Scholar 

  23. G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materialia 54, 3917 (2006).

    Article  CAS  Google Scholar 

  24. R. K. Singh Raman, J. B. Gnanamoorthy and S. K. Roy, Oxidation of Metals 42, 335 (1994).

    Google Scholar 

  25. S. Taniguchi, K. Yamamoto, D. Megumi and T. Shibata, Materials Science and Engineering A 308, 250 (2001).

    Article  Google Scholar 

  26. H. Li and W. Chen, Corrosion Science 53, 2097 (2011).

    Article  CAS  Google Scholar 

  27. D. G. Gaskell, Introduction to the Thermodynamics of Materials, 3rd ed, (Taylor & Francis, New York, 1995).

    Google Scholar 

  28. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Chapter 8—Corrosion by Sulfur, Elesevier, 2008.

  29. M. LaBranche, A. Garratt-Reed and G. J. Yurek, Journal of Electrochemical Society 130, 2405 (1983).

    Article  CAS  Google Scholar 

  30. H. J. Grabke, D. Wiemer and H. Viefhaus, Applied Surface Science 47, 243 (1991).

    Article  CAS  Google Scholar 

  31. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 323 (1992).

    Article  CAS  Google Scholar 

  32. P. Jian, L. Jian, H. Bing and G. Xie, Journal of Power Sources 158, 354 (2006).

    Article  CAS  Google Scholar 

  33. W. Tang, X. Yang, Z. Liu, S. Kasaishi and K. Ooi, Journal of Materials Chemistry 12, 2991 (2002).

    Article  CAS  Google Scholar 

  34. T. Watanabe, H. Uono, S. W. Song, K. S. Han and M. Yoshimura, Journal of Solid State Chemistry 162, 364 (2001).

    Article  CAS  Google Scholar 

  35. J. Barnes, J. Corish, F. Franck and J. F. Norton, Oxidation of Metals 24, 85 (1985).

    Article  CAS  Google Scholar 

  36. T. Amano, T. Watanabe and K. Michiyama, Oxidation of Metals 53, 451 (2000).

    Article  CAS  Google Scholar 

  37. H. Li and W. Chen, Oxidation of Metals 77, 107 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Natural Science and Engineering Research Council of Canada and NOVA Chemicals Limited and Kubota Metal Corporation Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chen, W. Effect of Sulfur Partial Pressures on Oxidation Behavior of Fe–Ni–Cr Alloys. Oxid Met 78, 103–122 (2012). https://doi.org/10.1007/s11085-012-9294-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9294-6

Keywords

Navigation