Skip to main content
Log in

Effect of Low-Levels of Strontium on the Oxidation Behavior of Selected Molten Aluminum–Magnesium Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effects of small additions of strontium on the oxidation behavior of aluminum–magnesium alloy melts were investigated by thermogravimetry at 750 °C for times up to 48 h. Oxidized samples were examined by FEGSEM, and phases formed within the oxide layer and in the alloy were identified by EDS, WDS and low-angle X-ray diffraction techniques. In the absence of Sr, the Al–Mg samples gained substantial amounts of weight by formation of spinel (MgAl2O4) at the oxide–metal interface. Samples containing Sr had significantly lower weight gains. A very significant decrease (98%) of total weight gain was observed for small Sr additions in the low Mg-bearing Al–Mg alloys. This change in oxidation behavior was linked to the presence of Sr enrichment of the liquid beneath the initial MgO layer suppressing the formation of spinel crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. ASM, Source Book on Selection and Fabrication of Aluminum Alloys (ASM, USA, 1978).

  2. J. R. Davis, Corrosion of Aluminum and Aluminum Alloys (ASM International, USA, 1999).

    Google Scholar 

  3. F. H. Samuel, A. M. Samuel, H. W. Doty, and S. Valtierra, Metallurgical and Material Transcation 34A, 115 (2003).

    Article  CAS  Google Scholar 

  4. S. Impey, D. J. Stephenson, and J. R. Nicholls, in Proceedings of the First International Conference on the Microscopy of Oxidation (1991), p. 238.

  5. S. Impey, D. J. Stephenson, and J. R. Nicholls, in Proceedings of the Second International Conference on the Microscopy of Oxidation (1993), p. 323.

  6. D. J. Field, G. M. Scamans, and E. P. Butler, Institute of Physics Conference Series No. 52, 401 (1980).

  7. D. J. Field, Treatise on Materials and Technology 31, 523 (1989).

    CAS  Google Scholar 

  8. D. J. Field, G. M. Scamans, and E. P. Butler, in Proceedings of the Conference of Environmental Degradation of Engineering Materials in Aggressive Environments, Blacksburg, VA (21–23 September, 1981), p. 393.

  9. D. J. Field, G. M. Scamans, and E. P. Butler, Metallurgical Transactions 18A, 463 (1987).

    CAS  ADS  Google Scholar 

  10. S. Impey, D. J. Stephenson, and J. R. Nicholls, Materials Science and Technology 4, 1126 (1988).

    CAS  Google Scholar 

  11. M. P. Silva and D. E. J. Talbot, in Light Metals, ed. P. G. Campbell (The Minerals, Metals & Materials Society, 1989), p. 1035.

  12. A. Nylund, K. Mizuno, and I. Olefjord, Oxidation of Metals 50, 309 (1998).

    Article  CAS  Google Scholar 

  13. O. Salas and V. Jayaram, Journal of the American Ceramic Society 78, 609 (1995).

    Article  CAS  Google Scholar 

  14. M. H. Zayan, O. M. Jamjoon, and N. A. Razik, Oxidation of Metals 34, 323 (1990).

    Article  CAS  Google Scholar 

  15. M. H. Zayan, Oxidation of Metals 34, 465 (1990).

    Article  CAS  Google Scholar 

  16. S. T. Lee, D. V. Schaefer, and F. E. Lockwood, Aluminium 61, 504 (1985).

    CAS  Google Scholar 

  17. L. Rault, M. Allibert, M. Prin, A. Dubus, Light Metals, 345 (1996).

  18. L. Rault and M. Allibert, Recents Progress in Genie Procedes 10, 49 (1996).

    CAS  Google Scholar 

  19. E. C. Partington, P. Grieveson, and B. Terry, Journal of Materials Science 33, 2447 (1998).

    Article  CAS  ADS  Google Scholar 

  20. H. P. Leighly and A. Alam, Journal of Physics F-Metal Physcis 14, 1573 (1984).

    Article  CAS  ADS  Google Scholar 

  21. J. A. S. Tenório and D. C. R. Espinosa, Oxidation of Metals 53, 361 (2000).

    Article  Google Scholar 

  22. B. Goldstein and J. Dresner, Surface Science 71, 15 (1978).

    Article  CAS  ADS  Google Scholar 

  23. G. J. Kaufman and E. L. Rooy, Aluminum Alloy Castings: Properties, Processes and Applications (AFS and ASM, USA, 2004).

    Google Scholar 

  24. D. J. Field, G. M. Scamans, and E. P. Butler, in Proceedings of the Conference of Environmental Degredation of Engineering Materials in Aggressive Environments, Blacksburg, VA (21–23 September, 1981), p. 393.

  25. K. G. Wikle, in Proceedings of the 82nd Annual Meeting of American Foundrymen’s Society, Des Plaines, IL (1979), p. 513.

  26. C. Houska, Metals and Materials 2, 100 (1988).

    Google Scholar 

  27. L. F. Mondolfo, Aluminum Alloys: Structure & Properties (Butterworth & Co, London, 1976).

    Google Scholar 

  28. D. Emadi, J. E. Gruzleski, and M. Pekguleryuz, Transactions of the American Foundrymen’s Society 104, 763 (1997).

    Google Scholar 

  29. K. Dennis, R. A. L. Drew, and J. E. Gruzleski, Aluminum Transactions 3, 31 (2000).

    CAS  Google Scholar 

  30. P. K. Yuen, K. Dennis, R. A. L. Drew, J. E. Gruzleski, in Molten Aluminum Processing, International AFS Conference, 6th, Orlando, FL, United States (11–13 November, 2001), p. 179.

  31. C. W. Bale, A. D. Pelton, and W. T. Thompson, Facility for the Analysis of Chemical Thermodynamics (McGill University/Ecole Polytechnique, Canada, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. L. Drew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozdemir, O., Gruzleski, J.E. & Drew, R.A.L. Effect of Low-Levels of Strontium on the Oxidation Behavior of Selected Molten Aluminum–Magnesium Alloys. Oxid Met 72, 241–257 (2009). https://doi.org/10.1007/s11085-009-9158-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9158-x

Keywords

Navigation