Skip to main content
Log in

Growth Stresses in Oxidized Tubes Under Uni- and Multi-Axial Oxidation Strain

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

When metallic components operate in aggressive environments their service life is, in general, determined by the presence of a protective surface film which acts as a barrier to the reactants. Large residual stresses can result from the volume changes due to oxidation, the so-called growth stresses. These stresses may lead to film cracking or spalling or both. A visco-elastic model for the calculation of growth stresses in oxidizing tubes has been developed. It can deal with uniaxial and multi-axial oxidation strain tensors. Different oxidation modes like surface and interface oxidation as well as duplex scale formation are treated. It appears that even relatively small lateral oxidation-strain components could have a considerable effect on the stress level in the tube. A simplified version of the model has been applied to simulate the geometrical changes of Zry tube sections exposed to air having reached the break-away regime. We think that lateral oxidation strains were mainly responsible for the observed diameter increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Abbreviations

E :

Young’s modulus

\(\varvec{\Phi}\) :

Pilling–Bedworth ratio

ν:

Poisson ratio

e :

oxidation strain

ɛ:

total strain

σ:

stress

δ:

scale thickness

cr :

creep

h :

thickness

r :

radius

u :

displacement

av:

average

cl:

cladding

d:

displaced

el:

elastic

eq:

equivalent

f:

oxide film

i:

inner

inel:

inelastic

int:

interface

intr:

intrinsic

lat:

lateral

me:

metal

o:

outer

ox:

oxide

par:

parabolic

r:

radial

s:

metallic substrate

tot:

total

z:

axial

Θ:

azimuthal

References

  1. Dankov P. D., Churaev P. V. (1950). Doklady Akademii Nauk SSSR 73:1221

    CAS  Google Scholar 

  2. Rhines F. N., Wolf J. S. (1970). Metal Transactions 1:1701

    CAS  Google Scholar 

  3. Stringer J. (1970). Corrosion Science 10:513

    Article  CAS  Google Scholar 

  4. Stott F. H., Atkinson A. (1994). Materials at High Temperatures 12:195

    CAS  Google Scholar 

  5. Evans H. E. (1995). International Materials Reviews 40:1

    CAS  Google Scholar 

  6. Huntz A. M., Schütze M. (1994). Materials at High Temperatures 12:151

    CAS  Google Scholar 

  7. Mitchell E., Voss D. A., Butler E. P. (1982). Materials Science 17:1825

    Article  CAS  Google Scholar 

  8. Hancock P., Nicholls J. R. (1994). Materials at High Temperatures 12:209

    CAS  Google Scholar 

  9. Christl W., Rahmel A., Schütze M. (1989). Oxidation of Metals 31:1

    Article  CAS  Google Scholar 

  10. Nodden J. D., Knights C. J., Thomas M. W. (1968). British Corrosion Journal 3:47

    Google Scholar 

  11. Tolpygo V. K., Clarke D. R. (1998). Oxidation of Metals 49:187

    Article  CAS  Google Scholar 

  12. Nagl M. M., Saunders S. R. J., Guttmann V. (1994). Materials at High Temperatures 12:163

    CAS  Google Scholar 

  13. Rosenband Y., Gany A., Timmat Y. M. (1995). Oxidation of Metals 43:141

    Article  CAS  Google Scholar 

  14. Przybilla W., Schütze M. (2002). Oxidation of Metals 58:103

    Article  CAS  Google Scholar 

  15. Schulte M., Schütze M. (1999). Oxidation of Metals 51:55

    Article  CAS  Google Scholar 

  16. Manning M. I. (1981). Corrosion Science 21:301

    Article  CAS  Google Scholar 

  17. Hsueh C. H., Evans A. G. (1983). Journal of Applied Physics 54:6672

    Article  CAS  Google Scholar 

  18. Schütze M. (1985). Oxidation of Metals 24:199

    Article  Google Scholar 

  19. Bernstein H. L. (1987). Metallurgical Transactions 18A:975

    Google Scholar 

  20. Rosenband V., Gany A. (1995). Corrosion Science 37:1991

    Article  CAS  Google Scholar 

  21. Schütze M. (1995). Oxidation of Metals 44:29

    Article  Google Scholar 

  22. C. Petersen, KfK Report 3469 (1983)

  23. H. Steiner, FZKA Report 6737 (2002)

  24. E. B. Evans, N Tsangarakis, H. B. Probst,and N. J. Garibotti, Proceedings of the Symposium of the Metallurgical Society AIME, Boston (1972)

  25. S. Leistikow and H. von Berg, unpublished (1982).

  26. Burton B. (1983). Journal of Nuclear Materials 113:172

    Article  CAS  Google Scholar 

  27. Burton B., Donaldson A. T., Reynolds G. L. (1979). Zirconium in the Nuclear Industry, Fourth Conference ASTMSTP 681:561–585

    Google Scholar 

  28. Parise M., Sicardy O., Cailletaud G. (1998). Journal of Nuclear Materials 256:35

    Article  CAS  Google Scholar 

  29. G. Schanz and S. Leistikow, Proc. 8th Int. Congr. on Met. Corr. Vol. II, Mainz (1981).

  30. Zhang J., Li N., Chen Y., Rusanov A.E. (2005). Journal of Nuclear Materials 336:1

    Article  CAS  Google Scholar 

  31. A. Heinzel, FZKA 6823 (2003).

  32. Castle J. E., Surman P. L. (1969). Journal of Physics and Chemistry 75:632

    Article  Google Scholar 

  33. Robertson J., Manning M. I. (1990). Materials Science and Technology 6:81

    CAS  Google Scholar 

  34. Goedjen J. G., Stout J. H., Guob Q., Shores D.A. (1994). Materials Science and Engineering: A 177:115

    Article  CAS  Google Scholar 

  35. Huntz A. M., Calvarin Amiri G., Evans H. E., Cailletaud G. (2002). Oxidation of Metals 57:499

    Article  CAS  Google Scholar 

  36. Ueno T. (1974). Transaction of the Japanese Institute of Metal 15:167

    CAS  Google Scholar 

  37. Delaunay D., Huntz A.M., Lacombe P. (1980). Corrosion Science 20:1109

    Article  CAS  Google Scholar 

  38. Tortorelli P. F., More K. L., Specht E. D., Pint B. A., Zschack P. (2003). Materials at High Temperatures 20(3):303

    Article  CAS  Google Scholar 

  39. Schumann E., Sarioglu C., Blachere J. R., Pettit F. S., Meier G. H. (2000). Oxidation of Metals 53:259

    Article  CAS  Google Scholar 

  40. C. Sarioglu, J. R. Blanchere, F. S. Pettit, and G. H. Meier, in Microscopy of Oxidation 3, S. B. Newcomb and J. A. Little, eds. (The Institute of Materials, London, 1997). pp.41–51.

  41. Groves G. W. (1970). Proceedings of the British Ceramic Society 15:103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, H., Konys, J. & Heck, M. Growth Stresses in Oxidized Tubes Under Uni- and Multi-Axial Oxidation Strain. Oxid Met 66, 37–67 (2006). https://doi.org/10.1007/s11085-006-9013-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9013-2

Keywords

Navigation