Skip to main content
Log in

Relative Projectivity and Transferability for Partial Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, K.A., Hales, A.W.: From a lattice to its ideal lattice. Algebra Universalis 4, 250–258 (1974). MR0364036 (51 #291)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balbes, R.: Projective and injective distributive lattices. Pacific J. Math. 21, 405–420 (1967). MR0211927 (35 #2802)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banaschewski, B., Nelson, E.: Equational compactness in equational classes of algebras. Algebra Universalis 2, 152–165 (1972). MR0308010 (46 #7125)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davey, B.A., Sands, B.: An application of Whitman’s condition to lattices with no infinite chains. Algebra Universalis 7(2), 171–178 (1977). MR0434896 (55 #7860)

    Article  MathSciNet  MATH  Google Scholar 

  5. Day, A.: A simple solution to the word problem for lattices. Canad. Math. Bull. 13, 253–254 (1970). MR0268092 (42 #2991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Day, A.: Splitting algebras and a weak notion of projectivity. In: Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), Dept. Math., Univ. Houston, Houston, Tex. pp. 466–485. MR0401603 (53 #5430) (1973)

  7. Day, A.: Splitting algebras and a weak notion of projectivity. Algebra Universalis 5(2), 153–162 (1975). MR0389715 (52 #10546)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dean, R.A.: Component subsets of the free lattice on n generators. Proc. Amer. Math. Soc. 7, 220–226 (1956). MR0078957 (18,6a)

    MathSciNet  MATH  Google Scholar 

  9. Dean, R.A.: Free lattices generated by partially ordered sets and preserving bounds. Canad. J. Math. 16, 136–148 (1964). MR0157916 (28 #1144)

    Article  MathSciNet  MATH  Google Scholar 

  10. Freese, R.: Planar sublattices of FM(4). Algebra Universalis 6(1), 69–72 (1976). MR0398927 (53 #2778)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freese, R.: Projective geometries as projective modular lattices. Trans. Amer. Math. Soc. 251, 329–342 (1979). MR531987 (81j:06010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freese, R., Ježek, J., Nation, J.B.: Free Lattices Mathematical Surveys and Monographs, vol. 42, American Mathematical Society, Providence, RI. MR1319815 (96c:06013) (1995)

  13. Gaskill, H.S.: On the relation of a distributive lattice to its lattice of ideals. Bull. Austral. Math. Soc. 7, 377–385 (1972). ; corrigendum, ibid. 8 (1973), 317–318. MR0323656 (48 #2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaskill, H.S.: On transferable semilattices. Algebra Universalis 2, 303–316 (1972). MR0323653 (48 #2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaskill, H.S., Grätzer, G., Platt, C.R.: Sharply transferable lattices. Canad. J. Math. 27(6), 1246–1262 (1975). MR0406879 (53 #10665)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grätzer, G.: General Lattice Theory Birkhäuser Verlag, Basel-Stuttgart. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52. MR504338 (80c:06001a) (1978)

  17. Grätzer, G.: General Lattice Theory, second ed., Birkhäuser Verlag, Basel, 1998, New appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung and R. Wille. MR1670580 (2000b:06001)

  18. Grätzer, G.: Lattice Theory: Foundation, Birkhäuser/Springer Basel AG, Basel. MR2768581 (2012f:06001) (2011)

  19. Huhn, A.P.: Schwach distributive Verbände. I. Acta Sci. Math. (Szeged) 33, 297–305 (1972). MR0337710 (49 #2479)

    MathSciNet  MATH  Google Scholar 

  20. Jipsen, P., Rose, H.: Varieties of Lattices, Lecture Notes in Mathematics, vol. 1533, Springer-Verlag, Berlin, 1992, out of print, available online at http://www1.chapman.edu/jipsen/JipsenRoseVoL.html, . MR1223545 (94d:06022)

  21. Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21, 110–121 (1968). MR0237402 (38 #5689)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jónsson, B.: Equational classes of lattices. Math. Scand. 22(1969), 187–196 (1968). MR0246797 (40 #66)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mitschke, A., Wille, R.: Finite distributive lattices projective in the class of all modular lattices. Algebra Universalis 6(3), 383–393 (1976). MR0429686 (55 #2697)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nation, J.B.: Bounded finite lattices, Universal algebra (Esztergom, 1977), Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York. pp. 531–533. MR660892 (1982)

  25. Nation, J.B.: Finite sublattices of a free lattice. Trans. Amer. Math. Soc. 269 (1), 311–337 (1982). MR637041 (83b:06008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nelson, E.: The embedding of a distributive lattice into its ideal lattice is pure. Algebra Universalis 4, 135–140 (1974). MR0357266 (50 #9734)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pardo, E., Wehrung, F.: Semilattices of groups and nonstable K-theory of extended Cuntz limits. K-Theory 37(1–2), 1–23 (2006). MR2274669 (2007g:46107)

    Article  MathSciNet  MATH  Google Scholar 

  28. Platt, C.R.: Finite transferable lattices are sharply transferable. Proc. Amer. Math. Soc. 81(3), 355–358 (1981). MR597639 (82c:06012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sachs, D.: Identities in finite partition lattices. Proc. Amer. Math. Soc. 12, 944–945 (1961). MR0133267 (24 #A3101)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schmidt, E.T.: Zur Charakterisierung der Kongruenzverbände der Verbände. Mat. Casopis Sloven. Akad. Vied 18, 3–20 (1968). MR0241335 (39 #2675)

    MathSciNet  MATH  Google Scholar 

  31. Tan, T.: On transferable distributive lattices. Nanta Math. 8(2), 50–60 (1975). MR0409300 (53 #13060)

    MathSciNet  MATH  Google Scholar 

  32. Wehrung, F.: Schmidt and Pudlák’s approaches to CLP Lattice Theory: Special Topics and Applications. Vol. 1, Birkhäuser/Springer, Cham. pp. 235–296. MR3330600 (2014a)

  33. Wehrung, F.: Liftable and unliftable diagrams, Lattice Theory: Special Topics and Applications. Vol. 1, Birkhäuser/Springer, Cham. pp. 337–392. MR3330602 (2014b)

  34. Wille, R.: Jeder endlich erzeugte, modulare Verband endlicher Weite ist endlich. Mat. Casopis Sloven. Akad. Vied 24, 77–80 (1974). MR0354474 (50 #6952)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Wehrung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehrung, F. Relative Projectivity and Transferability for Partial Lattices. Order 35, 111–132 (2018). https://doi.org/10.1007/s11083-016-9421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-016-9421-0

Keywords

Navigation