Skip to main content
Log in

Matching Trees for Simplicial Complexes and Homotopy Type of Devoid Complexes of Graphs

  • Published:
Order Aims and scope Submit manuscript

Abstract

We generalize some homotopy calculation techniques such as splittings and matching trees that are introduced for the computations in the case of the independence complexes of graphs to arbitrary simplicial complexes. We then exemplify their efficiency on some simplicial complexes, the devoid complexes of graphs, \(\mathcal {D}(G;\mathcal {F})\) whose faces are vertex subsets of G that induce \(\mathcal {F}\)-free subgraphs, where G is a multigraph and \(\mathcal {F}\) is a family of multigraphs. Additionally, we compute the homotopy type of dominance complexes of chordal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamaszek, M.: Splittings of independence complexes and the powers of cycles. J. Combinatorial Theory Series A 119(5), 1031–1047 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Haber, S., Krivelevich, M.: The number of F-matchings in almost every tree is a zero residue. Elect. J. Comb. 18(1), #P30 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Björner, A.: Topological Methods, Handbook of Combinatorics, vol. 1,2, pp 1819–1872. Elsevier, Amsterdam (1995)

  4. Björner, A.: A general homotopy complementation formula. Discret. Math. 193, 85–91 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bousquet-Mélou, M., Linusson, S., Nevo, E.: On the independence complex of square grids. J. Algebraic Combin. 27(4), 423–450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diestel, R.: Graph Theory. Springer (1997)

  7. Dirac, G. A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ehrenborg, R., Hetyei, G.: The topology of the independence complex. European J. of Combin. 27(6), 906–923 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Engström, A.: Complexes of directed trees and independence complexes. Discret. Math. 309, 3299–3309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forman, R.: A user’s guide to discrete Morse theory. Sem. Lothar. Combin. 48, B48c (2002)

    MathSciNet  MATH  Google Scholar 

  12. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

  13. Jonsson, J.: Simplicial Complexes of Graphs. Springer (2008)

  14. Kozlov, D.: Complexes of directed trees. J. Combinatorial Theory Series A 88, 112–122 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kozlov, D.: Combinatorial Algebraic Topology. Springer (2008)

  16. Marietti, M., Testa, D.: Cores of simplicial complexes. Discrete Comput. Geom. 40, 444–468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marietti, M., Testa, D.: A uniform approach to complexes arising from forests. Elect. J. Comb. 15, #R101 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Taylan.

Additional information

The author is supported by TÜBİTAK, grant no: 111T704.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylan, D. Matching Trees for Simplicial Complexes and Homotopy Type of Devoid Complexes of Graphs. Order 33, 459–476 (2016). https://doi.org/10.1007/s11083-015-9379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-015-9379-3

Keywords

Navigation