Skip to main content
Log in

Nonlinear fiber optics with water wave flumes: dynamics of the optical solitons of the derivative nonlinear Schrödinger equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we presented a novel technique called extended modified auxiliary equation mapping technique, which we used to analyze the combined Chen–Lee–Liu derivative nonlinear Schrödinger equation (MCLL-NLSE) analytically. With the help of three parameters, we were able to use our proposed method to produce newer, broader sets of exact solutions, including bright, periodic, semi half bright, dark, combined, semi half dark, doubly periodic, doubly bright, half bright, and half dark. This is the main distinction between our method and others currently in use. To develop the theoretical fluid dynamics, nonlinear fiber optics, electromagnetism, mathematical physics, bio-mathematics, soliton dynamics, plasma physics, industrial studies, quantum mechanics, nuclear physics and many other natural and physical sciences has been greatly impacted by recently discovered solutions. We have presented the newly discovered solutions in graphs in various dimensions using Mathematica 10.4 to provide a better clear picture of the dynamic properties of the solutions. Additionally, we conducted stability tests on the obtained solutions and presented them as a table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

The data that support the fndings of this study are available from the corresponding author upon reasonable request.

References

  • Abdel-Aty, A.H., Khater, M.M., Attia, R.A., Eleuch, H.: Exact traveling and nano-solitons wave solitons of the ionic waves propagating along microtubules in living cells. Mathematics 8, 697 (2020)

    Article  Google Scholar 

  • Ablowitz, M., Clarkson, P.: Soliton, Nonlinear Evolution Equations and Inverse scattering. Cambridge Unversity Press, New York (1991)

    Book  Google Scholar 

  • Ahmad, A., Mustafa, Z., Rehman, S.-U., Turki, N.B., Shah, N.A.: Solitary wave structures for the stochastic Nizhnik–Novikov–Veselov system via modified generalized rational exponential function method. Results Phys 52, 1 (2023)

    Article  Google Scholar 

  • Ahmad, J., Rani, S., Turki, N.B., Shah, N.A.: Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Results Phys. 52, 1 (2023)

  • Ahmad, J., Akram, S., Noor, K., et al.: Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 13, 10877 (2023)

  • Akram, S., Ahmad, J., Rehman, S.U., et al.: Stability analysis and dispersive optical solitons of fractional Schrödinger-Hirota equation. Opt. Quant. Electron. 55, 664 (2023)

  • Al-Mdallal, O.M., Syam, M.I.: Sine-Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation. Chaos Solitons Fract. 1, 1610–1617 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Ali, A., Ahmad, J., Javed, S.: Investigating the dynamics of soliton solutions to the fractional coupled nonlinear Schrödinger model with their bifurcation and stability analysis. Opt. Quant. Electron. 55, 829 (2023)

    Article  Google Scholar 

  • Alshahrani, B., Yakout, H.A., Khater, M.M., Abdel-Aty, A.H., Mahmoud, E.E., Baleanu, D., Eleuch, H.: Accurate novel explicit complex wave solutions of the (2+1)-dimensional Chiral nonlinear Schrödinger equation. Results Phys. 104–119, 23 (2021)

  • Baskonus, H.M., Osman, M.S., Ramzan, M., Tahir, M., Ashraf, S.: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber. Opt. Quant. Electron. 53(10), 1–17 (2021)

    Article  Google Scholar 

  • Baskonus, H.M., Osman, M.S., Rehman, H.U., et al.: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber. Opt. Quant. Electron. 53, 556 (2021)

    Article  Google Scholar 

  • Biswas, A.: Chirp-free bright optical soliton perturbation with Chen–Lee–Liu equation by traveling wave hypothesis and semi-inverse variational principle. Optik 172(5), 772–776 (2018)

    Article  ADS  Google Scholar 

  • Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J., Ding, E.: Rogue wave modes for a derivative nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014)

  • Cheemaa, N., Mehmood, S.A., Rizvi, S.T.R., Younis, M.: Single and combined optical solitons with third order dispersion in Kerr media. Optik 127, 8203–8208 (2016)

    Article  ADS  CAS  Google Scholar 

  • Cheemaa, N., Seadawy, A.R., Chen, S.: Some newfamilies of solitarywave solutions of the generalized Schamel equation and their applications in plasma physics. Eur. Phys. J. Plus 134, 117 (2019)

    Article  Google Scholar 

  • Cheemaa, N., Younis, M.: New and more general traveling wave solutions for nonlinear Schrödinger equation. Waves in Random and Complex Media (2015)

  • Cheemaa, N., Younis, M.: New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system. J. Nonlinear Dyn. (2015)

  • Cheemaa, N., Seadawy, A.R., Chen, S.: More general families of exact solitarywave solutions of the nonlinear Schrödinger equationwith their applications in nonlinear optics. Eur. Phys. J. Plus 133, 547 (2018)

  • Dong, X., Li, M., Hu, A., Chen, C.: Dynamics of the smooth position of a derivative nonlinear Schrödinger equation. Roman. J. Phys. 1, 1 (2022)

    Google Scholar 

  • Fang, F., Hu, B., Zhang, L.: Riemann-Hilbert method and N-soliton solutions for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. arXiv preprint arXiv:2004-03193 (2020)

  • Gaon, Y.T., Tian, B.: General hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics. Comput. Phys. Commun. 158–164, 133 (2011)

    Google Scholar 

  • Guo, S., Mei, L., Li, Y., Sun, Y.: The improved fractional sub-equation method and its applications to the space time fractional differential equations in fluid mechanics. Phys. Lett. A 1, 407–411 (2012)

    ADS  MathSciNet  Google Scholar 

  • Hassan, M.M.: Exact solitary wave solutions for a generalized KdV-Burgers equation Chaos. Solitons Fract. 19, 1201–1206 (2004)

    Article  ADS  Google Scholar 

  • Hu, A., Li, M., He, J.: Dynamic of the smooth positons of the higher-order Chen–Lee–Liu equation. Nonlinear Dyn. 104(4), 4329–4338 (2021)

    Article  Google Scholar 

  • Hu, B., Zhang, L., Zhang, N.: On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger. J. Comput. Appl. Math. 390, 113393 (2021)

    Article  Google Scholar 

  • Huber, A.: A novel class of solutions for a non-linear third order wave equation generated by the Weierstrass transformation. Chaos Solitons Fract. 972–978, 28 (2006)

    MathSciNet  Google Scholar 

  • Huber, A.: A generalized exponential transform method for solving non-linear evolution equations of physical relevance. Appl. Math. Comput. 344–352, 215 (2009)

    MathSciNet  Google Scholar 

  • Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Results Phys. 49, 1 (2023)

    Article  Google Scholar 

  • Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non-differential functions further results. Comput. Math. Appl. 54, 1367–1376 (2006)

    Article  Google Scholar 

  • Khater, M., Lu, D., Hamed, Y.: Computational simulation for the (1 + 1)-dimensional Ito equation arising quantum mechanics and nonlinear optics. Results Phys. 19, 1 (2020)

    Article  Google Scholar 

  • Khater, M., Attia, R.A.M., Abdel-Aty, A.H., Lu, D.: Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term. Results Phys. 16, 103–110 (2020)

  • Kudryashov, N.A.: On types of nonlinear nonintegrable differential equations with exact solutions. Phys. Lett. A 155, 269–275 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Non. Sci. Numer. Simul. 17, 2248–2253 (2012)

    Article  MathSciNet  Google Scholar 

  • Kundu, A.: Landau–Lifshitz and higherorder nonlinear systems gauge generated from nonlinear Schrödinger type equations. J. Math. Phys. 25, 3433–3438 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Lain, Z., Horak, P., Feng, X., Xiao, L., Frampton, K., White, N., Tucknott, J.A., Rutt, H., Payne, D.N., Stewart, W., Loh, W.H.: Nanomechanical optical fiber. Opt. Express 20(28), 1 (2012)

    Google Scholar 

  • Laskin, N.: Fractional Schrodinger equation. Phys. Rev. E 66, 1 (2002)

    Article  MathSciNet  Google Scholar 

  • Liu, S., Fu, Z., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Lo, E., Mei, C.C.: A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation. J. Fluid. Mech. 150, 395–416 (1985)

    Article  ADS  Google Scholar 

  • Lu, B.Q., Pan, Z.L., Qu, B.Z., Jiang, X.F.: Solitary wave solutions for some systems of coupled nonlinear equation. Phys. Lett. A 180, 61–64 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 1, 650–654 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Mirhosseini-Alizamini, S., Rezazadeh, H., Eslami, M., Mirzazadeh, M., Korkmaz, A.: New extended direct algebraic method for the Tzitzica type evolution equations arising in nonlinear optics. Comput. Methods Differ. Equ. 8, 28–53 (2020)

    MathSciNet  Google Scholar 

  • Miura, M.R.: Bäcklund Transformation. Springer, Berlin (1978)

    Google Scholar 

  • Nasir, T., Mona, N.F., Vahid, S.M.: New Exact Solutions of the Perturbed Nonlinear Fractional Schrodinger Equation Using Two Reliable Methods. Appl. Appl. Math. 10, 139–148 (2015)

    MathSciNet  Google Scholar 

  • Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alexandria Eng. J. 73, 173–187 (2023)

    Article  Google Scholar 

  • Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear Schrödinger equation by using extended and modified rational expansion method. J. Nonlinear Opt. Phys. Mater. 1, 1 (2023)

    Google Scholar 

  • Nasreen, N., Younas, U., Lu, D., et al.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quant. Electron. 55, 868 (2023)

    Article  Google Scholar 

  • Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 1 (2023)

    Article  Google Scholar 

  • Pandir, Y., Ekin, A.: Dynamics of combined soliton solutions of unstable nonlinear Schrödinger equation with new version of the trial equation method. Chin. J. Phys. 534–543, 67 (2020)

    Google Scholar 

  • Rahimy, M.: Applications of fractional differential equations. Appl. Math. Sci. 4(50), 2453–2461 (2010)

    MathSciNet  Google Scholar 

  • Rogers, C., Shadwick, W.F.: Bäcklund Transformations. Academic Press, New York (1982)

    Google Scholar 

  • Saied, E., Ghonamy, M.I.: A generalized Weierstrass elliptic function expansion method for solving some nonlinear partial differential equations. Comput. Math. Appl. 58, 1725–1735 (2009)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R., Ahmed, S., Rizvi, S.T., Nazar, K.: Applications for mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation in water wave flumes and optical fibers. Opt. Quant. Electron. 55, 1 (2022). https://doi.org/10.1007/s11082-022-04300-8

    Article  Google Scholar 

  • Seadawy, A.R., Cheemaa, N.: Some new families of spiky solitary waves of one-dimensional higherorder K-dV equation with power law nonlinearity in plasma physics. Indian J. Phys. 94, 117 (2020). https://doi.org/10.1007/s12648-019-01442-6

    Article  ADS  CAS  Google Scholar 

  • Wan, Y., Song, L., Yin, L., Zhang, H.: Generalized method and new exact wave solutions for (2+1)-dimensional Broer–Kaup–Kupershmidt system. Appl. Math. Comput. 1, 644–657 (2007)

    MathSciNet  Google Scholar 

  • Wang, M., Li, X., Zhang, J.: Sub-ODE method and solitary wave solution for higher order nonlinear Schrödinger equation. Phys. Lett. A 1, 96–101 (2007)

  • Xu, L.P., Zhang, J.L.: Exact solutions to two higher order nonlinear Schrödinger equations. Chaos Solitons Fract. 31, 937–942 (2007)

    Article  ADS  Google Scholar 

  • Yakup, Y., Biswas, A., Asma, M., Guggilla, P., Khan, S., Ekici, M., Alzahrani, A.K., Belic, M.R.: Pure-cubic optical soliton perturbation with full nonlinearity. Optik 1, 165–394 (2020)

    Google Scholar 

  • Yomba, E.: The extended Fan sub-equation method and its application to (2+1)-dimensional dispersive long wave and Whitham-Broer-Kaup equations. Chin. J. Phys. 43(4), 789–805 (2005)

    MathSciNet  Google Scholar 

  • Younis, M., Cheemaa, N., Mahmood, S.A., Rizvi, S.T.R.: On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Opt. Quant. Electron. 48, 542 (2016)

    Article  Google Scholar 

  • Zhang, Y.S., Guo, L.J., Chabchoub, A., He, J.S.: Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation. arXiv:1409.7923v2

  • Zhang, J., Jiang, F., Zhao, X.: An improved \((G^{^{\prime }}/G)\) -expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 87, 1716–1725 (2010)

  • Zhu, S.D.: Exp-function Method for the Discrete mKdV Lattice, Exp-function Method for the Discrete mKdV Lattice. Int. J. Nonlinear Sci. Numer. Simul. 1, 465–468 (2007)

    Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 11801263).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nadia Cheemaa or Mustafa Inc.

Ethics declarations

Ethical approval

Not Applicable.

Confict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Cheemaa, N., Lin, W. et al. Nonlinear fiber optics with water wave flumes: dynamics of the optical solitons of the derivative nonlinear Schrödinger equation. Opt Quant Electron 56, 434 (2024). https://doi.org/10.1007/s11082-023-05985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05985-1

Keywords

Navigation