Skip to main content
Log in

On the new conformable optical ferromagnetic and antiferromagnetic magnetically driven waves

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Using fractional differential geometry, we define different types of conformable magnetic curves to discuss some geometric features of the motion of the charged particle when its geometry is induced by the conformable fractional derivative. We obtain the non-stretching motions and the inextensibility conditions of the conformable curves to focus on their evolutions. Then, as a special case, we obtain the time evolution of the Frenet–Serret vectors of the conformable curves with respect to the optical ferromagnetic and antiferromagnetic cases. Finally, we focus on the time evolution of conformable curves under the case of the optical ferromagnetic and antiferromagnetic conditions to investigate how the anholonomy density is associated with the magnetic flux flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • ALHorani, M., Khalil, R.: Total fractional differentials with applications to exact fractional differential equations. Int. J. Comput. Math. 95(6–7), 1444–1452 (2018)

    MathSciNet  MATH  Google Scholar 

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  • Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 10(2), 109–137 (2015)

    MathSciNet  Google Scholar 

  • Aphithana, A., Ntouyas, S.K., Tariboon, J.: Forced oscillation of fractional differential equations via conformable derivatives with damping term. Bound. Value Problems 2019(1), 1–16 (2019)

    MathSciNet  MATH  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64(18), 2107 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)

    ADS  Google Scholar 

  • Baleanu, D., Jajarmi, A., Hajipour, M.: A new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel. J. Optim. Theory Appl. 175(3), 718–737 (2017)

    MathSciNet  MATH  Google Scholar 

  • Baleanu, D., Vacaru, S.: Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics. Open Phys. 9(5), 1267–1279 (2011)

    ADS  Google Scholar 

  • Baleanu, D., Vacaru, S.I.: Fractional almost Kä hler-Lagrange geometry. Nonlinear Dyn. 64(4), 365–373 (2011)

    Google Scholar 

  • Baleanu, D., Vacaru, S.I.: Fractional curve flows and solitonic hierarchies in gravity and geometric mechanics. J. Math. Phys. 52(5), 053514 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bouchiat, C., Mezard, M.: Elasticity model of a supercoiled DNA molecule. Phys. Rev. Lett. 80(7), 1556 (1998)

    ADS  Google Scholar 

  • El-Shiekh, R.M., Gaballah, M.: Solitary wave solutions for the variable-coefficient coupled nonlinear Schrödinger equations and Davey-Stewartson system using modified sine-Gordon equation method. J. Ocean Eng. Sci. 5(2), 180–185 (2020)

    Google Scholar 

  • Fang, X.S., Lin, Z.Q.: Field in single-mode helically-wound optical fibers. IEEE Trans. Microw. Theory Tech. 33(11), 1150–1154 (1985)

    ADS  Google Scholar 

  • Frins, E.M., Dultz, W.: Rotation of the polarization plane in optical fibers. J. Lightwave Technol. 15(1), 144–147 (1997)

    ADS  Google Scholar 

  • Ginoux, J.M.: Differential Geometry Applied to Dynamical Systems. World Scientific, Singapore (2009)

    MATH  Google Scholar 

  • Goriely, A., Tabor, M.: Nonlinear dynamics of filaments I. Dyn. Instab. Physica D: Nonlinear Phenomena 105(1–3), 20–44 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  • Guven, J., Valencia, D.M., Vázquez-Montejo, P.: Environmental bias and elastic curves on surfaces. J. Phys. A: Math. Theor. 47(35), 355201 (2014)

    MathSciNet  MATH  Google Scholar 

  • Gözütok, U., Çoban, H., Sağıroğlu, Y. Frenet frame with respect to conformable derivative. Filomat, 33(6) (2019)

  • Hajipour, M., Jajarmi, A., Baleanu, D.: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. 13(2) (2018)

  • Has, A., Yılmaz, B.: Effect of fractional analysis on magnetic curves. Revista Mexicana de Física, 68(4 Jul-Aug), 041401-1 (2022)

  • Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  • Huynen, A., Detournay, E., Denoël, V.: Eulerian formulation of elastic rods. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2190), 20150547 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hänninen, R., Hietala, N., Salman, H.: Helicity within the vortex filament model. Sci. Rep. 6(1), 1–12 (2016)

    Google Scholar 

  • Iyiola, O.S., Nwaeze, E.R.: Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Differ. Appl 2(2), 115–122 (2016)

    Google Scholar 

  • Jackson, E. A.: Perspectives of nonlinear dynamics (No. IPPJ–723). Nagoya Univ.(Japan). Inst. of Plasma Physics (1985)

  • Katugampola, U. N.; A new fractional derivative with classical properties. arXiv preprint arXiv:1410.6535 (2014)

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  • Korpinar, T., Demirkol, R.C.: Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold. J. Mod. Opt. 66(8), 857–867 (2019)

    ADS  MathSciNet  Google Scholar 

  • Korpinar, T., Demirkol, R.C.: Directional magnetic and electric vortex lines and their geometries in Minkowski space. Filomat 35(3), 1015–1031 (2021)

    MathSciNet  Google Scholar 

  • Korpinar, T., Demirkol, R.C., Korpinar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space. Int. J. Geom. Methods Modern Phys. 16(08), 1950117 (2019)

    MathSciNet  MATH  Google Scholar 

  • Korpinar, Z., Tchier, F., İnç, M., Ragoub, L., Bayram, M.: New soliton solutions of the fractional Regularized Long Wave Burger equation by means of conformable derivative. Results Phys. 14, 102395 (2019)

    Google Scholar 

  • Kugler, M., Shtrikman, S.: Berry’s phase, locally inertial frames, and classical analogues. Phys. Rev. D 37(4), 934 (1988)

    ADS  MathSciNet  Google Scholar 

  • Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)

    MathSciNet  MATH  Google Scholar 

  • Kumar, D., Singh, J., Baleanu, D.: A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91(1), 307–317 (2018)

    MathSciNet  MATH  Google Scholar 

  • Kurka, P.: Topological and symbolic dynamics. Société mathématique de France (2003)

  • Köpinar, T., Demirkol, R.C., Asíl, V.: The motion of a relativistic charged particle in a homogeneous electromagnetic field in De-Sitter space. Revista mexicana de física 64(2), 176–180 (2018)

    MathSciNet  Google Scholar 

  • Körpinar, T., Demirkol, R.C.: Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations. Optik 200, 163334 (2020)

    ADS  Google Scholar 

  • Körpinar, T., Demirkol, R.C., Asil, V.: Directional magnetic and electric vortex lines and their geometries. Indian J. Phys. 95(11), 2393–2404 (2021)

    ADS  Google Scholar 

  • Körpinar, T., Demirkol, R. C.: Berry phase of the linearly polarized light wave along an optical fiber and its electromagnetic curves via quasi adapted frame. Waves Random Complex Media, pp 1–20 (2020)

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations. Eur. Phys. J. D 73(9), 1–11 (2019)

    MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Elastic magnetic curves of ferromagnetic and superparamagnetic models. Math. Methods Appl. Sci. 44(7), 5797–5820 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD. Optik 247, 167544 (2021)

    ADS  Google Scholar 

  • Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)

    MathSciNet  MATH  Google Scholar 

  • Lazopoulos, K.A., Lazopoulos, A.K.: Fractional differential geometry of curves and surfaces. Progr. Fract. Differ. Appl 2(3), 169–186 (2016)

    MATH  Google Scholar 

  • Miah, M.M., Seadawy, A.R., Ali, H.M.S., Akbar, M.A.: Further investigations to extract abundant new exact traveling wave solutions of some NLEEs. J. Ocean Eng. Sci. 4(4), 387–394 (2019)

    Google Scholar 

  • Miah, M.M., Seadawy, A.R., Ali, H.M.S., Akbar, M.A.: Abundant closed form wave solutions to some nonlinear evolution equations in mathematical physics. J. Ocean Eng. Sci. 5(3), 269–278 (2020)

    Google Scholar 

  • Odibat, Z., Momani, S.: Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 32(1), 28–39 (2008)

    MATH  Google Scholar 

  • Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier, Amsterdam (1974)

    MATH  Google Scholar 

  • Parto-Haghighi, M., Manafian, J.: Solving a class of boundary value problems and fractional Boussinesq-like equation with \(\beta \)-derivatives by fractional-order exponential trial functions. J. Ocean Eng. Sci. 5(3), 197–204 (2020)

    Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Shallal, M.A., Ali, K.K., Raslan, K.R., Rezazadeh, H., Bekir, A.: Exact solutions of the conformable fractional EW and MEW equations by a new generalized expansion method. J. Ocean Eng. Sci. 5(3), 223–229 (2020)

    Google Scholar 

  • Silva, F.S., Moreira, D.M., Moret, M.A.: Conformable Laplace transform of fractional differential equations. Axioms 7(3), 55 (2018)

    MATH  Google Scholar 

  • Singh, J., Kumar, D., Baleanu, D.: On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag–Leffler type kernel. Chaos Interdiscip. J. Nonlinear Sci. 27(10), 103113 (2017)

    MathSciNet  MATH  Google Scholar 

  • Smith, A.M.: Birefringence induced by bends and twists in single-mode optical fiber. Appl. Opt. 19(15), 2606–2611 (1980)

    ADS  Google Scholar 

  • Ünal, E., Gökdoğan, A.: Solution of conformable fractional ordinary differential equations via differential transform method. Optik 128, 264–273 (2017)

    ADS  Google Scholar 

  • Ulrich, R., Rashleigh, S.C., Eickhoff, W.: Bending-induced birefringence in single-mode fibers. Opt. Lett. 5(6), 273–275 (1980)

    ADS  Google Scholar 

  • Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Google Scholar 

  • Zendehnam, A., Mirzaei, M., Farashiani, A., Horabadi Farahani, L.: Investigation of bending loss in a single-mode optical fibre. Pramana 74(4), 591–603 (2010)

    ADS  Google Scholar 

  • Zhao, D., Singh, J., Kumar, D., Rathore, S., Yang, X. J. (2017). An efficient computational technique for local fractional heat conduction equations in fractal media. J. Nonlinear Sci. Appl. 10(4)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the paper jointly and contributed equally to this work. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Rıdvan Cem Demirkol.

Ethics declarations

Conflict of interest

All authors confirm that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Demirkol, R.C. & Körpinar, Z. On the new conformable optical ferromagnetic and antiferromagnetic magnetically driven waves. Opt Quant Electron 55, 496 (2023). https://doi.org/10.1007/s11082-023-04755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04755-3

Keywords

Mathematics Subject Classification

Navigation