Skip to main content
Log in

Design of circular photonic crystal fiber for OAM extraction SDM applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Optical fibers are widely used for long links (intercontinental, terrestrial optical backbone) and short scopes (data center, access network). Certain fibers, called optical fibers specialty, also play an essential role in other fields such as medicine (e.g., endoscopy), sensors, laser applications, etc. The constant proliferation of Internet services, combined with the growth in users, makes it necessary to increase the current capacity of networks to optical fiber. Today, the fibers installed and used for transmission at very high-speed use only the fundamental mode (denoted LP) to transmit information: we speak of fiber's single-mode optics. As they now reach the nonlinear limit of Shannon, one of the ideas for increasing the capacity of optical networks is to implement spatial multiplexing (SDM: Space Divison Multiplexing) and to simultaneously use different modes in a so-called slightly multimode fiber (generally supporting a few dozen modes) or different cores in a multicore fiber. Since 2010, several studies have been developed in this direction, mainly on the fibers supporting the LP (Linearly Polarized) modes and, more recently, the OAM (Orbital Angular Momentum) modes, that is, circularly polarized and helical phase modes. In the latter case, the phase and polarization properties limit the coupling between the modes. The design of a suggested circular photonic crystal fibre with support for 18 OAM modes is discussed in this research. The numerical analysis demonstrates that the proposed fibre has very good values for the fibre parameters, including a low containment loss of less than 810–4 dB/m at a wavelength of 1.9 m, a dispersion flat chromatic with a dispersion dissimilarity for the OAM modes that ranges from 75 to 77 ps/nm.km for a wavelength of 1.3 to 1.9 m, and a noteworthy effectual index partition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data supporting the findings of this work are available within the article.

References

  • Arunkumar, U., et al.: Power Factor Correction Using Sensorless Brushless DC Motor with Bridgeless Converter Topology. J. Comput. Theor. Nanosci. 17(4), 1796–1803 (2020)

    Article  Google Scholar 

  • Arun Kumar, U., Mahendran, G., Gobhinath, S. (2023). A Review on Artificial Intelligence Based E-Learning System. In: Ranganathan, G., Bestak, R., Fernando, X. (eds) Pervasive Computing and Social Networking. Lecture Notes in Networks and Systems, vol 475. Springer, Singapore. https://doi.org/10.1007/978-981-19-2840-6_50.

  • Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961 (1997)

    Article  ADS  Google Scholar 

  • Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E., Ramachandran, S.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013)

    Article  ADS  Google Scholar 

  • Brunet, C., Vaity, P., Messaddeq, Y., La Rochelle, S., Rusch, L.A.: Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Soc. Am. 22(21), 26117–26127 (2014a)

    Google Scholar 

  • Brunet, C., Vaity, P., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Design, fabrication and validation of an oam fiber supporting 36 states. Opt. Express 22(21), 26117–26127 (2014b)

    Article  ADS  Google Scholar 

  • Brunet, C., Ung, B., Belanger, P.-A., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Vector mode analysis of ring-core fibers: Design tools for spatial multiplexing division. J. Lightwave Technol. 32(23), 4046–4057 (2014c)

    Article  ADS  Google Scholar 

  • Brunet, C., Ung, B., Wang, L., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Design of a family of ring-core fibers for OAM transmission studies. Opt. Express 23(8), 10553–10563 (2015)

    Article  ADS  Google Scholar 

  • Carpenter, J.A., Thomsen, B,C., Wilkinson, T.D.: Optical vortex based mode division multiplexing over graded-index multimode fiber. In: Optical fiber communication conference/national fiber optic engineers conference 2013, Optical Society of America, p. OTh4G.3 (2013)

  • Celechovský, R., Bouchal, Z.: Optical implementation of the vortex information channel. New J. Phys. 9(9), 328 (2007)

    Article  ADS  Google Scholar 

  • Golowich, S.: Asymptotic theory of strong spin-orbit coupling in optical fiber. Opt. Lett. 39(1), 92–95 (2014)

    Article  ADS  Google Scholar 

  • Golowich, S., Kristensen, P., Bozinovic, N., Gregg, P., Ramachandran, S.:Fibers supporting orbital angular momentum states for information capacity scaling. In: Proceeding of FIO, OSA p. FW2D.2 (2012)

  • Gregg, P., Kristensen, P., Golowich, S., Olsen, J., Steinvurzel, P., Ramachandran, S.: Stable transmission of 12 OAM states in air-core fiber. In: CLEO: 2013, Optical Society of America p. CTu2K.2 (2013)

  • Gregg, P., Kristensen, P., Ramachandran, S.: Conservation of orbital angular momentum in air-core optical fibers. Optica 2(3), 267–270 (2015)

    Article  ADS  Google Scholar 

  • Iizuka, K.: Element of photonics, for fiber and integrated optics, vol. II, Saleh, B.E. (ed.), Wiley, New York, p. 647 (2002)

  • Kavya, G., Kaarthika, P., Jeevitha, S., Kumar, U. A.: Improved power quality converter fed BLDC motor drive. In: 2017 International conference on innovations in information, embedded and communication systems (ICIIECS) pp. 1–5 (2017). https://doi.org/10.1109/ICIIECS.2017.8276005

  • Kumar, U., Kavya, G., Kishore J., Raj, K. A. N.: BL-CSC Converter fed BLDC motor drive with sensorless control. In: 2018 4th International Conference on Electrical Energy Systems (ICEES), pp. 449–453 (2018). https://doi.org/10.1109/ICEES.2018.8443286.

  • Kumar, U.A., Ravichandran, C.S.: Upgrading the quality of power using TVSS device and PFC converter fed SBLDC motor. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-021-05600-z

    Article  Google Scholar 

  • Kurokawa, K., Nakajima, K., Tsujikawa, K., YamamotO, T., Tajima, K.: Ultra-wideband transmission over low loss PCF. J. Lightwave Technol. 27(11), 1653–1662 (2009)

    Article  ADS  Google Scholar 

  • Li, G., Bai, N., Zhao, N., Xia, C.: Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photon. 6(4), 413–487 (2014)

    Article  Google Scholar 

  • Li, S., Wang, J.: Multi-orbital-angular-momentum multi-ring fiber for High-density space-division multiplexing. Photon J. IEEE 5(5), 7101007 (2013)

    Article  ADS  Google Scholar 

  • Li, S., Wang, J.: A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes), Sci. Rep. 4 (2014)

  • Mahendran, G., Arunkumar, U., Saravanan, S.: High step-up converter using fopid control algorithm for renewable energy applications. In: 2022 8th International Conference on Advanced Computing and Communication. systems (ICACCS), pp. 1429–1433, (2022). https://doi.org/10.1109/ICACCS54159.2022.9785091.

  • Murshid, S., Grossman, B., Narakorn, P.: Spatial domain multiplexing: a new dimension in fiber optic multiplexing. Opt. Laser Technol. 40(8), 1030–1036 (2008)

    Article  ADS  Google Scholar 

  • Nejad, R.M., Allahverdyan, K., Vaity, P., Amiralizadeh, S., Brunet, C., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Orbital angular momentum mode division multiplexing over 1.4 km rcf fiber. In: Conference on lasers and electroptics (CLEO), San Jose, p. SW4F.3 (2016)

  • Ramachandran, S., Kristensen, P.: Optical vortices in fiber. Nanophotonics 2(5–6), 455–474 (2013)

    Article  ADS  Google Scholar 

  • Ramachandran, S., Kristensen, P., Yan, M.F.: Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34(16), 2525 (2009)

    Article  ADS  Google Scholar 

  • Richardson, D.J., Fini, J.M., Nelson, L.E.: Space-division multiplexing in optical fibers. Nat. Photon. 7(5), 354–362 (2013)

    Article  ADS  Google Scholar 

  • Sathyadevaki, R., Sundar, D.S., Raja, A.S.: Photonic crystal 4×44×4 dynamic hitless routers for integrated photonic NoCs. Photon. Netw. Commun. 36, 82–95 (2018). https://doi.org/10.1007/s11107-018-0758-8

    Article  Google Scholar 

  • Shanmugasundar, D., Sathyadevaki, R., Sridarshini, T., et al.: Photonic crystal based routers for photonic integrated on chip networks: a brief analysis. Opt. Quant. Electron. 50, 383 (2018). https://doi.org/10.1007/s11082-018-1655-1

    Article  Google Scholar 

  • Sivaranjani, R., et al.: Photonic crystal based all-optical half adder: a brief analysis. Laser Phys. 30(11), 116205 (2020)

    Article  ADS  Google Scholar 

  • Sundar Shanmuga, D., Sathyadevaki, R., Sivanantha Raja, A.: High-efficiency filters for photonic integrated networks: a brief analysis. Laser Phys. 28(11), 116203 (2018)

    Article  ADS  Google Scholar 

  • Ung, B., Vaity, P., Wang, L., Messaddeq, Y., Rusch, L.A., LaRochelle, S.: Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Opt. Express 22(15), 18044–18055 (2014)

    Article  ADS  Google Scholar 

  • Weisshaar, A., Li, J., Gallawa, R., Goyal, I.: Vector and quasi- vector solutions for optical waveguide modes using efficient Galerkin’s Method with Hermite Gauss Basis functions. J. Lightwave Technol. 13(8), 1795–1800 (1995)

    Article  ADS  Google Scholar 

  • Yue Y., et al.: Octave-spanning supercontinuum generation of vortices in a As2S3 ring photonic crystal fiber. In: Conference on lasers and electro-optic (2012)

  • Zhang, Z., Gan, J., Heng, X., Wu, Y., Li, Q., Qian, Q., Chen, D., Yang, Z.: Optical fiber design with orbital angular momentum light purity higher than 999%. Opt. Express 23(23), 29331 (2015)

    Article  ADS  Google Scholar 

  • Zhang, H., Zhang, X., Li, H., Deng, Y., Xi, L., Tang, X., Zhang, W.: The orbital angular momentum modes supporting fibers based on the photonic crystal fiber structure. Helmut Cölfen (2017)

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University. This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-02-0336).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MMK and UAK: have done the numerical analysis for the article. SM and JRJ: have experienced the results with proper optimization. SS: has validated the complete work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. M. Kamruzzaman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The author of this publication declares that there is no conflict of interest associated with this publication.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamruzzaman, M.M., Mhatli, S., Arun Kumar, U. et al. Design of circular photonic crystal fiber for OAM extraction SDM applications. Opt Quant Electron 54, 864 (2022). https://doi.org/10.1007/s11082-022-04251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04251-0

Keywords

Navigation