Skip to main content
Log in

Effect of transmitter divergence-angle on the performance of underwater visible light communication system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Underwater visible light communication emerges as a promising technique to enhance the capacity of underwater wireless communication networks for upcoming generation. Major technical problem with underwater visible light communication systems in motion is the pointing, acquisition, and tracking. To ease pointing, acquisition, and tracking, hence it is important to navigate optical information beam over broad range and adjust the transmitter beam divergence angle according to the link condition, which is adjusted by the Optisystem software. In this paper, performance comparison among wide range of transmittance optical beams in underwater visible light communications system for high-speed communication is presented for PIN as well as for Avalanche photodiode. The effect of using variable transmittance beam-divergence angle on the bit-error rate, signal-to-noise ratio, communication link distance is also investigated. OptiSystem and MATLAB software is used to implement the underwater visible light communication transceiver system. Finally, it is shown in the paper that in the presence of pointing errors, adaptive beam control techniques improve the performance of high-speed Underwater visible light communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anguita, D., Brizzolara, D., Parodi, G., et al.: Optical wireless underwater communication for AUV: preliminary simulation and experimental results. IEEE OCEANS, Santander, Spain, pp. 1–5 (2011)

  • Anous, N., Abdallah, M., & Qaraqe, K. (2017). Performance evaluation for vertical inhomogeneous underwater visible light communications. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (pp. 1–5). IEEE.

  • Arnon, S.: Optimization of urban optical wireless communication systems. IEEE Trans. Wirel. Commun. 2(4), 626–629 (2003)

    Article  Google Scholar 

  • Arnon, S.: Minimization of outage probability of WiMAX link supported by laser link between a high-altitude platform and a satellite. J. Opt. Soc. Am. A 26(7), 1545–1552 (2009)

    Article  ADS  Google Scholar 

  • Arnon, S.: Underwater optical wireless communication network. Opt. Eng. 49(1), 15001–15006 (2010)

    Article  ADS  Google Scholar 

  • Baghdady, J., Miller, K., Morgan, K., Byrd, M., Osler, S., Ragusa, R., Li, W., Cochenour, B.M., Johnson, E.G.: Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing. Opt. Express 24(9), 9794–9805 (2016)

    Article  ADS  Google Scholar 

  • Boucouvalas, A.C., Peppas, K.P., Yiannopoulos, K., et al.: Underwater optical wireless communications with optical amplification and spatial diversity. IEEE Photon. Technol. Lett. 28(22), 2613–2616 (2016)

    Article  ADS  Google Scholar 

  • Cochenour, B., Mullen, L., Muth, J.: Temporal response of the underwater optical channel for high bandwidth wireless laser communications. IEEE J. Ocean. Eng. 38(4), 730–742 (2013)

    Article  ADS  Google Scholar 

  • Dalgleish, F.R., Shirron, J.J., Rashkin, D., et al.: Physical layer simulator for undersea free-space laser communications. Opt. Eng. 53, 051410–051410 (2014)

    Article  ADS  Google Scholar 

  • Dong, Y., Tang, S., Zhang, X.: Effect of random sea surface on downlink underwater wireless optical communications. IEEE Commun. Lett. 17(11), 2164–2167 (2013)

    Article  Google Scholar 

  • Dong, Y., Zhang, H., Zhang, X.: On impulse response modelling for underwater wireless optical MIMO links. In: IEEE/CIC Int. Conf. on Communications (ICCC), Shanghai, China, pp. 151–155 (2014)

  • Doniec, M., Detweiler, C., Vasilescu, I., Chitre, M., Hoffmann-Kuhnt, M., Rus, D.: Aquaoptical: a light weight device for high-rate long-range underwater point-to-point communication. Mar. Technol. Soc. J. 44(4), 55–65 (2010)

    Article  Google Scholar 

  • Gabriel, C., Khalighi, M.A., Bourennane, S., et al.: Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 5(1), 1–12 (2013)

    Article  Google Scholar 

  • Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016)

    Article  Google Scholar 

  • Kaymak, Y., Cessa, R.R., Feng, J., Ansari, N., Zhou, M.: On divergence-angle efficiency of a laser beam in free-space optical communications for high-speed trains. IEEE Trans. Veh. Technol. 66(9), 7677–7687 (2017)

    Article  Google Scholar 

  • Kharraz, O., Forsyth, D.: PIN and APD photodetector efficiencies in the longer wavelength range 1300–1550 nm. Optik 124(16), 2574–2576 (2013)

    Article  ADS  Google Scholar 

  • Liu, J., Dong, Y., Zhang, H.: ‘On received intensity for misaligned underwater wireless optical links’. OCEANS, Shanghai, China, pp. 1–4 (2016)

  • Mai, V.V., Kim, H.: Adaptive beam control techniques for airborne free-space optical communication systems. Appl. Opt. 57(26), 7462–7471 (2018)

    Article  ADS  Google Scholar 

  • Mai, V.V., Kim, H.: Beam size optimization and adaptation for highaltitude airborne free-space optical communication systems. IEEE Photon. J. 11(2), 1–13 (2019)

    Article  Google Scholar 

  • Naboulsi, M.A., Sizun, H., Fornel, F.: Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43(2), 319–329 (2004)

    Article  ADS  Google Scholar 

  • Nakamura, K., Mizukoshi, I., Hanawa, M.: Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel. Opt. Express 23(2), 1558–1566 (2015)

    Article  ADS  Google Scholar 

  • Oubei, H.M., Duran, J.R., Janjua, B., Wang, H.Y., Tsai, C.T., Chi, Y.C., Ng, T.K., Kuo, H.C., He, J.H., Alouini, M.S., Lin, G.R., Ooi, B.S.: 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 23(18), 23302–23309 (2015a)

    Article  ADS  Google Scholar 

  • Oubei, H.M., Li, C., Park, K.-H., Ng, T.K., Alouini, M.-S., Ooi, B.S.: 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Express 23(16), 20743–20748 (2015b)

    Article  ADS  Google Scholar 

  • Pandey, P., Agrawal, M.: High speed and Long range underwater optical wireless communication. In: Global oceans Singapore–US Gulf Coast, pp. 1–10. IEEE (2020)

  • Pandey, P., Matta, G., & Aggarwal, M. (2022). Investigation of photodetector responsivity on the performance of underwater optical wireless communication systems. In OCEANS 2022-Chennai (pp. 1–8). IEEE.

  • Safi, H., Dargahi, A., Cheng, J., Safari, M.: Analytical channel model and link design optimization for ground-to-HAP free-space optical communications. J. Lightw. Technol. 38(18), 5036–5047 (2020)

    Article  ADS  Google Scholar 

  • Sharifzadeh, M., Ahmadirad, M.: Performance analysis of underwater wireless optical communication systems over a wide range of optical turbulence. Opt. Commun. 427(June), 609–616 (2018)

    Article  ADS  Google Scholar 

  • Shijian, T., Yuhan, D., Xuedan, Z.: Impulse response modelling for underwater wireless optical communication links. IEEE Trans. Commun. 62, 226–234 (2014)

    Article  Google Scholar 

  • Song, T., Wang, Q., Wu, M., Kam, P.: Performance of laser intersatellite links with dynamic beam waist adjustment. Opt. Express 24(11), 11950–11960 (2016)

    Article  ADS  Google Scholar 

  • Tang, S., Dong, Y., Zhang, X.: On link misalignment for underwater wireless optical communications. IEEE Commun. Lett. 16(10), 1688–1690 (2012)

    Article  Google Scholar 

  • Xu, J., Kong, M.W., Lin, A.B., Song, Y.H., Yu, X.Y., Qu, F.Z., Han, J., Deng, N.: OFDM-based broadband underwater wireless optical communication system using a compact blue LED. Opt. Commun. 369, 100–105 (2016a)

    Article  ADS  Google Scholar 

  • Xu, J., Song, Y., Yu, X., et al.: Underwater wireless transmission of highspeed QAM-OFDM signals using a compact red-light laser. Opt. Express 24(8), 8097–8109 (2016b)

    Article  ADS  Google Scholar 

  • Zhang, H., Dong, Y.: Link misalignment for underwater wireless optical communications. Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, pp. 215–218 (2015)

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Pandey.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Matta, G. & Agrawal, M. Effect of transmitter divergence-angle on the performance of underwater visible light communication system. Opt Quant Electron 54, 802 (2022). https://doi.org/10.1007/s11082-022-04195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04195-5

Keywords

Navigation