Skip to main content
Log in

Further innovative optical solitons of fractional nonlinear quadratic-cubic Schrödinger equation via two techniques

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Arbitrary order partial differential equations involving nonlinearity have mostly been utilized to portray interior behavior of numerous real-world phenomena during the couple of years. The research about the nonlinear optical context relating to saturable law, power law, triple-power law, dual-power law, logarithm law, polynomial low and mostly visible Kerr law media is increasing at a remarkable rate. In this exploration, the space and time fractional nonlinear Schrodinger equation with the quadratic-cubic nonlinearity is taken into account for optical solitons and other solutions by means of the improved tanh method and the rational \(\left( {G^{\prime}/G} \right)\)-expansion method. An alteration of wave variable with the assistance of conformable fractional derivative reduces the suggested equation into an ordinary differential equation. A successful adaptation of the mentioned techniques makes available plentiful solitons and other types solutions of the above equation. The originated solutions might be accommodating to analyze the underlying structures of nonlinear optics. We bring out the diverse 3-D and 2-D shapes for solitons to depict the physical appearances of the achieved solutions. The performance of the adopted methods is mentionable which claimed to be eligible for using to unravel any other nonlinear partial differential equations emerging in nature sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadian, A., Bilal, M., Khan, M.A., Asjad, M.I.: The non-Newtonian maxwell nanofluid flow between two parallel rotating disks under the effects of magnetic field. Sci. Rep. 10(1), 1–14 (2020a)

    Article  Google Scholar 

  • Ahmadian, A., Bilal, M., Khan, M.A., AsjadI, M.I.: Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk. Sci. Rep. 10(1), 1–13 (2020b)

    Article  Google Scholar 

  • Akinyemi, L., Senol, M., Rezazadeh, H., Ahmad, H., Wang, H.: Abundant optical soliton solutions for an integrable (2+1)-dimensional nonlinear conformable Schrodinger system. Res. Phys. 25, 1–12 (2021)

    Google Scholar 

  • Attia, R.A.M., Khater, M.M.A., Ahmed, A.E.-S., El-Shorbagy, M.A.: Accurate sets of solitary solutions for the quadratic-cubic fractional nonlinear Schrodinger equation. AIP Adv. 11, 1–9 (2021)

    Article  Google Scholar 

  • Biswas, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solutions with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik 139, 16–19 (2017)

    Article  ADS  Google Scholar 

  • Cheema, N., Younis, M.: New and more general traveling wave solutions for nonlinear Schrodinger equation. Waves Ran. Com. Med. 26, 30–41 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Chowdhury, M.A., Miah, M.M., Ali, H.M.S., Chu, Y.M., Osman, M.S.: An investigation to the nonlinear (2+1)-dimensional soliton equation for discovering explicit and periodic wave solutions. Res. Phys. 23, 1–19 (2021)

    Google Scholar 

  • Durur, H., Ilhan, E., Bulut, H.: Novel complex wave solutions of the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation. Fractal Fract. 4, 1–7 (2020)

    Article  Google Scholar 

  • Gao, W., Ismael, H.F., Husien, A.M., Bulut, H., Baskonus, H.M.: Optical soliton solutions of the cubic-quartic nonlinear Schrodinger and resonant nonlinear Schrodinger equation with the parabolic law. Appl. Sci. 10, 1–14 (2020)

    Google Scholar 

  • Gepreel, K.A.: The homotopy perturbation method applied to nonlinear fractional Kadomtsev–Petviashvili–Piskkunov equations. Appl. Math. Lett. 24, 1458–1434 (2011)

    Article  Google Scholar 

  • Guner, O., Eser, D.: Exact solutions of the space time fractional symmetric regularized long wave equation using different methods. Adv. Math. Phys. 2014, 456804 (2014)

    Article  MathSciNet  Google Scholar 

  • Hu, Y., Luo, Y., Lu, Z.: Analytical solution of the linear fractional differential equation by Adomian decomposition method. J. Comput. Appl. Math. 215, 220–229 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Islam, M.T., Akbar, M.A., Azad, A.K.: A rational -expansion method and its application to the modified KdV-Burgers equation and the (2+1)-dimensional Boussinesq equation. Nonlinear Stud. 6, 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  • Islam, M.T., Akter, M.A.: Distinct solutions of nonlinear space-time fractional evolution equations appearing in mathematical physics via a new technique. Partial Diff. Eq. Appl. Math. 3, 324–387 (2021)

    Google Scholar 

  • Ismael, H.F., Bulut, H., Baskonus, H.M., Gao, W.: Dynamical behaviors to the coupled Schrodinger–Boussinesq system with the beta derivative. AIMS Math. 6, 7909–7928 (2021)

    Article  MathSciNet  Google Scholar 

  • Kaplan, M., Unsal, O., Bekir, A.: Exact solutions of nonlinear Schrodinger equation by using symbolic computation. Math. Meth. Appl. Sci. 39, 2093–2099 (2016)

    Article  MathSciNet  Google Scholar 

  • Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.A.M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  • Li, C., Guo, Q., Zhao, M.: On the solutions of (2+1)-dimensional time-fractional Schrodinger equation. Appl. Math. Lett. 94, 238–243 (2019)

    Article  MathSciNet  Google Scholar 

  • Li, Y.X., Muhammad, T., Bilal, M., Khan, M.A., Ahmadian, A., Pansera, B.A.: Fractional simulation for Darcy–Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk. Alex. Eng. J. 60(5), 4787–4796 (2021)

    Article  Google Scholar 

  • Liu, W., Yu, W., Yang, C., Liu, M., Zhang, Y., Lie, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Non. Dyn. 89, 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  • Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrodinger equations. Optik 140, 136–144 (2017)

    Article  ADS  Google Scholar 

  • Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993)

    MATH  Google Scholar 

  • Pal, R., Loomba, S., Kumar, C.N.: Chirped self-similar waves for quadratic-cubic nonlinear Schrodinger equation. Ann. Phys. 387, 213–221 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Pandir, Y., Duzgun, H.H.: New exact solutions of the space-time fractional cubic Schrodinger equation using the new type F-expansion method. Waves Ran. Com. Med. 29, 425–434 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Rizvi, S.T.R., Ali, K., Bashir, S., Younis, M., Ashraf, R., Ahmad, M.O.: Exact solution of (2+1)-dimensional fractional Schrodinger equation. Superlattices Microstruct. 107, 234–239 (2017)

    Article  ADS  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Younis, M., Iqbal, S., Althobaiti, S., El-Shehawi, A.M.: Various optical soliton for weak fractional nonlinear Schrodinger equation with parabolic law. Res. Phys. 23, 174–184 (2021)

    Google Scholar 

  • Salam, E.A.-B.A., Yousif, E., El-Aasser, M.: Analytical solution of the space-time fractional nonlinear Schrodinger equation. Rep. Math. Phys. 77, 19–34 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Shuaib, M., Ali, A., Khan, M.A., Ali, A.: Numerical investigation of an unsteady nanofluid flow with magnetic and suction effects to the moving upper plate. Adv. Mech. Eng. 12(2), 1–8 (2020a)

    Article  Google Scholar 

  • Shuaib, M., Bilal, M., Khan, M.A., Malebary, S.J.: Fractional analysis of viscous fluid flow with heat and mass transfer over a flexible rotating disk. Comput. Model. Eng. Sci. 123(1), 377–400 (2020b)

    Google Scholar 

  • Waqas, H., Alghamdi, M., Muhammad, T., Khan, M.A.: Bioconvection transport of magnetized Walter’s B nanofluid across a cylindrical disk with nonlinear radiative heat transfer. Case Stud. Therm. Eng. 101097, 1–12 (2021b)

    Google Scholar 

  • Waqas, H., Alqarni, M.S., Muhammad, T., Khan, M.A.: Numerical study for bioconvection transport of micropolar nanofluid over a thin needle with thermal and exponential space-based heat source. Case Stud. Therm. Eng. 101158, 1–10 (2021c)

    Google Scholar 

  • Waqas, H., Farooq, U., Alqarni, M.S., Muhammad, T., Khan, M.A.: Bioconvection transport of magnetized micropolar nanofluid by a Riga plate with non-uniform heat sink/source. Waves Random Complex Media 1, 1–20 (2021a)

    Google Scholar 

  • Wazwaz, A.M., Kaur, L.: Optical solitons for nonlinear Schrodinger (NLS) equation in normal dispersive regimes. Opt. Int. J. Light Elect. Opt. 184, 428–435 (2019)

    Article  Google Scholar 

  • Xu, Y.J., Bilal, M., Al-Mdallal, Q., Khan, M.A., Muhammad, T.: Gyrotactic micro-organism flow of Maxwell nanofluid between two parallel plates. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  • Yokus, A., Durur, H., Duran, S.: Simulation and refraction event of complex hyperbolic type solitary wave in plasma and obtical fiber for the perturbed Chen-Lee-Liu equation. Opt. Quant. Electron. 1, 1–12 (2021)

    Google Scholar 

  • Younis, M., Cheemaa, N., Mehmood, S.A., Rizvi, S.T.R., Bekir, A.: A variety of exact solutions to (2+1)-dimensional Schrodinger equation. Waves Ran. Com. Med. 30, 490–499 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Nofal, T.A., Gepreel, K.A., Shohib, R.M.A., Alngar, M.E.M.: Cubic-quartic optical soliton solutions in fiber Bragg gratings with Lakshmanan–Porsezian–Daniel model by two integration schemes. Opt. Quan. Elec. 53, 1–17 (2021)

    Article  Google Scholar 

  • Zhou, S.S., Bilal, M., Khan, M.A., Muhammad, T.: Numerical analysis of thermal radiative maxwell nanofluid flow over-stretching porous rotating disk. Micromachines 12(5), 1–10 (2021)

    Google Scholar 

Download references

Acknowledgements

Thanks to the anonymous referees for their helpful comments and the Editor for the constructive suggestions. José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Contributions

Md. Tarikul Islam: Conceptualization, Methodology, Validation, Formal analysis, Investigation; Mst. Armina Aktar: Writing-original draft preparation, Validation, Writing-review and editing; J.F. Gómez-Aguilar: Formal analysis, Investigation, Methodology, writing-review and editing; J. Torres-Jiménez: Validation, Formal analysis, Investigation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.T., Aktar, M.A., Gómez-Aguilar, J.F. et al. Further innovative optical solitons of fractional nonlinear quadratic-cubic Schrödinger equation via two techniques. Opt Quant Electron 53, 562 (2021). https://doi.org/10.1007/s11082-021-03223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03223-0

Keywords

Mathematics Subject Classification

Navigation