Skip to main content
Log in

Acetone sensor based 1D defective phononic crystal as a highly sensitive biosensor application

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present work, a one-dimensional (1D) phononic crystal (PnC) was prepared as a biomarker for measuring acetone concentrations in water. As acetone is considered a very important substance for human health, it is also looked as a vital industrial material in medicine, fiber, and solvent industries. Thereby measuring the smallest changes in acetone concentration efficiently is the main target of this study. For this purpose, a binary multilayer 1D PnC sensor of the configuration ([lead/epoxy]2acetone([lead/epoxy]2) with a defect layer filled with acetone in-between is considered. Each acetone concentration induces a specific resonant peak (the maximum transmitted frequency inside the phononic band gap) which is related directly to acetone acoustic properties. Moreover, our results revealed that acetone acts as two substances with opposite properties depending on the direction of the resonant peak. Where, for concentrations up to the value of 9.1%, the resonant peak shifted towards the high frequency range. While for concentrations starting from the percentage of 10%, the resonant peak shifted towards the low frequency range. Finally, the sensor performance parameters such as sensitivity (S), quality factor (Q), and figure of merit (FOM) were calculated for the two concentration ranges. The sensor provided high sensitivity with a value of 4.29 × 107 Hz, quality factor of 20,732, resolution of 1,741,200 Hz, and FOM of 52.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadla, M.M., Elsayed, H.A., Mehaney, A.: Thermo-optical properties of binary one dimensional annular photonic crystal including temperature dependent constituents. Phys. E 119, 114020 (2020)

    Google Scholar 

  • Ahmed, A.M., Mehaney, A.: Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 9(1–9), 6973 (2019)

    ADS  Google Scholar 

  • Aly, A.H., Mehaney, A.: Enhancement of phononic band gaps in ternary/binary structure. Phys. B 407(21), 4262–4268 (2012)

    ADS  Google Scholar 

  • Aly, A.H., Mehaney, A.: Phononic crystals with one dimensional defect as sensor materials. Indian J. Phys. 91(9), 1021–1028 (2017)

    ADS  Google Scholar 

  • Aly, A.H., Mehaney, A., Eissa, M.F.: Ionizing particle detection based on phononic crystals. J. Appl. Phys. 118, 064502 (2015)

    ADS  Google Scholar 

  • Andrigo, P., Caimi, A., Cavalieri d’Oro, P., Fait, A., Roberti, L., Tampieri, M., Tartari, V.: Phenol-acetone process: cumene oxidation kinetics and industrial plant simulation. Chem. Eng. Sci. 47(11), 2511–2516 (1992)

    Google Scholar 

  • Arango, S.V., Sánchez, D.B., Torres, R., Kyriacou, P., Lucklum, R.: Differential phononic crystal sensor: towards a temperature compensation mechanism for field applications development. Sensors 17, 1960 (2017)

    Google Scholar 

  • Arango, S.V., Betancur, D., Torres, R., Kyriacou, P.: Use of transient time response as a measure to characterize phononic crystal sensors. Sensors 18, 3618 (2018)

    Google Scholar 

  • Babiker, M., Tilley, D.R., Albuquerque, E.L., Goncalves da Silva, C.E.T.: Acoustic green function for superlattices. J. Phys. C Solid State Phys. 18, 1269 (1985)

    ADS  Google Scholar 

  • Buhvestov, U., Rived, F., Rafols, C., Bosch, E., Roses, M.: Solute– solvent and solvent–solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol–water mixtures measured by solvatochromic indicators. J. Phys. Organic Chem. 11, 185–192 (1998)

    Google Scholar 

  • Cao, W., Qi, W.: Plane wave propagation in finite 2–2 composites. J. Appl. Phys. 78(1), 4627 (1995)

    ADS  Google Scholar 

  • Chen, A.L., Wang, Y.S.: Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals. Phys. B Condensed Matter 392, 369–378 (2007)

    ADS  Google Scholar 

  • Elsayed, H.A., Mehaney, A.: A new method for glucose detection using the one dimensional defective photonic crystals. Mater. Res. Express 6, 036201 (2019)

    ADS  Google Scholar 

  • Garlantezec, R., Chevrier, C., Cordier, S.: The study of the relation between maternal occupational exposure to solvents and birth defects should include oxygenated solvents. Occup. Environ. Med. 69(12), 933–933 (2012)

    Google Scholar 

  • Georgiev, G.S., Dakova, I.G., Valova, N.L.: Radical methyl methacrylate—methacrylic acid copolymerization in isopropyl alcohol, acetone, and their mixtures. Application of the copolymer products for microencapsulation of ampicylline trihydrate. Colloid Polym. Sci. 272, 938–945 (1994)

    Google Scholar 

  • Gharibi, H., Mehaney, A.: Two-dimensional phononic crystal sensor for volumetric detection of hydrogen peroxide (H2O2) in liquids. Phys. E 126, 114429 (2021)

    Google Scholar 

  • Gharibi, H., Mehaney, A., Bahrami, A.: High performance design for detecting NaI–water concentrations using a two-dimensional phononic crystal biosensor. J. Phys. D: Appl. Phys. 54, 015304 (2020)

    ADS  Google Scholar 

  • Hossin, B., Rizi, K., Murdan, S.: Application of Hansen Solubility Parameters to predict drug–nail interactions, which can assist the design of nail medicines. Eur. J. Pharm. Biopharm. 102, 32–40 (2016)

    Google Scholar 

  • Hussain, T., Vovusha, H., Umer, R., Ahuja, R.: Superior sensing affinities of acetone towards vacancy induced and metallized ZnO monolayers. Appl. Surf. Sci. 456, 711–716 (2018)

    ADS  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    ADS  Google Scholar 

  • Kathy, M.-V., Likhodii, S.S., Exequiel, R., Stephanie, B., Yeoumei, C.L., Dominic, C., Rosalind, C., Lionel, C., Anne, L., Comeau, F.J.E., Cunnane, S.C.: Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 22(1), 1–8 (2006)

    Google Scholar 

  • Ke, M.Z., Liu, Z.Y., Qiu, C.Y., Wang, W.G., Shi, J., Wen, W.J., Sheng, P.: Negative-refraction imaging with two-dimensional phononic crystals. Phys. Rev. B 72, 064306 (2005)

    ADS  Google Scholar 

  • Khelif, A., Deymier, P.A., Rouhani, B.D., Vasseur, J.O., Dobrzynski, L.: Two-dimensional phononic crystal with tunable narrow pass band: application to a waveguide with selective frequency. J. Appl. Phys. 94, 1308 (2003)

    ADS  Google Scholar 

  • Kim, S.-J., et al.: Bioinspired catalysts: exceptional high performance of pt based bimetallic catalysts for exclusive detection of exhaled biomarkers. Adv. Mater. 29, 36 (2017)

    Google Scholar 

  • Liu, F., Wang, J., Li, B.: Ni-based tantalate sensing electrode for fast and low detection limit of acetone sensor combining stabilized zirconia. Sens. Actuators B Chem. 304, 127375 (2020)

    Google Scholar 

  • Lucklum, R., Li, J.: Phononic crystals for liquid sensor applications. Meas. Sci. Technol. 10, 124014 (2009)

    ADS  Google Scholar 

  • Lucklum, F.F., Vellekoop, M. J.: 3D phononic-fluidic cavity sensor for resonance measurements of volumetric fluid properties. In 2016 IEEE Sensors, Orlando, FL, USA, pp. 1–3, (2016) https://doi.org/10.1109/ICSENS.2016.7808613

  • Lucklum, R., Ke, M., Zubtsov, M.: Two-dimensional phononic crystal sensor based on a cavity mode. Sensors and Actuators B 171(172), 271–277 (2012)

    Google Scholar 

  • Maldovan, M.: Sound and heat revolutions in phononics. Nature 503, 209–217 (2013)

    ADS  Google Scholar 

  • Mehaney, A.: Phononic crystal as a neutron detector. Ultrasonics 93, 37 (2019a)

    Google Scholar 

  • Mehaney, A.: Biodiesel physical properties detection using one-dimensional phononic crystal sensor. Acoust. Phys. 65, 374–378 (2019b)

    ADS  Google Scholar 

  • Mehaney, A., Ahmed, A.M.: Locally resonant phononic crystals at low frequencies based on porous SiC multilayer. Sci. Rep. 9(1), 14767 (2019)

    ADS  Google Scholar 

  • Mehaney, A., Ahmed, A.M.: Theoretical design of porous phononic crystal sensor for detecting CO2 pollutions in air. Phys. E 124, 114353 (2020)

    Google Scholar 

  • Mehaney, A., Elsayed, H.A.: Hydrostatic pressure effects on a one-dimensional defective phononic crystal comprising a polymer material. Solid State Commun. 322, 114054 (2020)

    Google Scholar 

  • Mehaney, A., Hassan, A.A.S.: Evolution of low-frequency phononic band gaps using quasi-periodic/defected phononic crystals. Mater. Res. Express 6(10), 105801 (2019)

    ADS  Google Scholar 

  • Mehaney, A., Gharibi, H., Bahrami, A.: Phononic eco-sensor for detection of heavy metals pollutions in water with spectrum analyzer. IEEE Sens. J. (2021). https://doi.org/10.1109/JSEN.2020.3036750

    Article  Google Scholar 

  • Mukhin, N., Kutia, M., Oseev, A., Steinmann, U., Palis, S., Lucklum, R.: Narrow band solid-liquid composite arrangements: alternative solutions for phononic crystal-based liquid sensors. Sensors 19(17), 3743 (2019)

    Google Scholar 

  • Mukhin, N.V., Oseev, A., Kutia, M.M., Borodacheva, E.S., Korolev, P.G.: Journal of the russian universities: determination of ethanol content in fuels with phononic crystal sensor. Radioelectronics 22, 107–115 (2019)

    Google Scholar 

  • Olsson, R.H., III., El-Kady, I.: Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20, 012002 (2009)

    ADS  Google Scholar 

  • Oseev, A., Zubtsov, M., Lucklum, R.: Gasoline properties determination with phononic crystal cavity sensor. Sens. Actuators B Chem. 189, 208–212 (2013)

    Google Scholar 

  • Pennec, Y., Jin, Y., Rouhani, B.D.: Phononic and photonic crystal for sensing application. Adv. Appl. Mech. 52, 105–145 (2019)

    Google Scholar 

  • Rupasov, V.I., Singh, M.: Polariton-atom bound state in a dispersive medium. Phys. Lett. A 222, 258–262 (1996)

    ADS  Google Scholar 

  • Sabri, Y.M., Kandjani, A.E., Rashid, S.S., Harrison, C.J., Ippolito, S.J., Bhargava, S.K.: Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sens. Actuators B Chem 275, 215–222 (2018)

    Google Scholar 

  • Schaafs, W.: Molekularakustik. Springer-Verlag, Berlin (1963)

    Google Scholar 

  • Sehgal, C.M., Porter, B.R., Greenleaf, J.F.: Ultrasonic nonlinear parameters and sound speed of alcohol–water mixtures. J. Acoust. Soc. Am. 79, 566–570 (1986)

    ADS  Google Scholar 

  • Sharma, G., Kumar, S., Singh, V.: Design of Si–SiO2 Phoxonic crystal having defect layer for simultaneous sensing of biodiesel in a binary mixture of diesel through optical and acoustic waves. Acoust. Phys. 63(2), 159–167 (2017)

    ADS  Google Scholar 

  • Shehatah, A., Mehaney, A.: Temperature Influences on the Performance of Biodiesel Phononic Crystal Sensor. Mater. Res. Express 6, 125556 (2019)

    Google Scholar 

  • Singh, M.R.: The effect of the dipole–dipole interaction in electromagnetically induced transparency in polaritonic band gap materials. J. Modern Opt. 54(12), 1739–1757 (2007)

    ADS  MATH  Google Scholar 

  • Singh, M.R.: Photon transparency in metallic photonic crystals doped with an ensemble of nanoparticles. Phys. Rev. A 79(1), 013826 (2009)

    ADS  Google Scholar 

  • Storer, M., Dummer, J., Lunt, H., Scotter, J., McCartin, F., Cook, J., Swanney, M., Kendall, D., Logan, F., Epton, M.: Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 Diabetes. J. Breath Res.arch 5(4), 046011 (2011)

    ADS  Google Scholar 

  • Villa-Arango, S., Torres, R., Kyriacou, P.A., Lucklum, R.: Fully-disposable multilayered phononic crystal liquid sensor with symmetry reduction and a resonant cavity. Measurement 102, 20–25 (2017)

    ADS  Google Scholar 

  • Wang, Y.Z., Li, F.M., Kishimoto, K., Wang, Y.S., Huang, W.H.: Wave localization in randomly disordered layered three-component phononic crystals with thermal effects. Arch. Appl. Mech. 80, 629 (2010)

    ADS  MATH  Google Scholar 

  • Xinran, Z., Biao, D., Wei, L., Xiangyu, Z.: Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sens. Actuators B Chem. 320, 128405 (2020)

    Google Scholar 

  • Zhang, X., Liu, Z.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85, 341 (2004)

    ADS  Google Scholar 

  • Zubtsov, M., Lucklum, R., Ke, M., Oseev, A., Grundmann, R., Henning, B., Hempel, U.: 2D phononic crystal sensor with normal incidence of sound. Sens. Actuators, A 186, 118–124 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mehaney.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehaney, A., Ahmed, I.I. Acetone sensor based 1D defective phononic crystal as a highly sensitive biosensor application. Opt Quant Electron 53, 97 (2021). https://doi.org/10.1007/s11082-021-02737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02737-x

Keywords

Navigation