Skip to main content
Log in

Plasmonic properties of spheroidal spindle and disc shaped core–shell nanostructures embedded in passive host-matrices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Metal coated semiconductor nanoparticles are excellent absorbers or scatterers of electromagnetic radiation, depending on their shape, size, material composition, and the refractive index of the host medium. In this work, we investigated the optical and plasmonic properties of spheroidal spindle- and disc-shaped ZnO@Ag core–shell nanocomposites embedded in a dielectric passive host-matrix by varying the size, thickness of the metallic shell, and the dielectrics function of the host matrix. The theoretical and numerical analysis is carried out for the core–shell nanoparticles having volume less than 1.34 × 105 nm3 within the framework of quasistatic approximation. We found that the core–shell nanoparticles possess four resonances—two of which correspond to the silver/core and silver/host-matrix interfaces, while the other two correspond to the bonding/antibonding pairs due to separation of charges in the composite along the principal axes. The tunability of the plasmon resonances of the composite system enables it to exhibit very interesting material properties in a variety of applications extending from the UV to near-infrared spectral regions. The wavelength of disc-shaped core–shell nanostructure exhibits a red-shift relative to the spindle-shaped one for both longitudinal and transverse resonance modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alsawafta, M., Wahbeh, M., Truong, V.-V.: Plasmonic modes and optical properties of gold and silver ellipsoidal nanoparticles by the discrete dipole approximation. J. Nanomater. 2012, 1–10 (2012). https://doi.org/10.1155/2012/457968

    Article  Google Scholar 

  • Beye, A.C., et al.: Control of the surface plasmon resonance of two configurations of nanoparticles: simple gold nanorod and gold/silica core/shell. Nanosci. Nanotechnol. Res. 4, 1–6 (2017)

    Google Scholar 

  • Beyene, G., Senbeta, T., Mesfin, B.: Size dependent optical properties of ZnO@Ag core/shell nanostructures. Chin. J. Phys. 58, 235–243 (2019)

    Article  Google Scholar 

  • Chen, M.S., Goodman, D.W.: Catalytically active Au: from nano-particles to ultra-thin films. Acc. Chem. Res. 39, 739–746 (2006)

    Article  Google Scholar 

  • Chen, F., Johnston, R.L.: Plasmonic properties of silver nanoparticles on two substrates plasmonic properties of silver nanoparticles on two substrates. Plasmonics 4, 147–152 (2009)

    Article  Google Scholar 

  • Gorokhova, E.I., et al.: Structural, optical, and luminescence properties of ZnO: Ga optical scintillation ceramic. J. Opt. Technol. 85, 90–100 (2018)

    Article  Google Scholar 

  • Grady, N.K., Halas, N.J., Nordlander, P.: Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem. Phys. Lett. 399, 167–171 (2004)

    Article  ADS  Google Scholar 

  • Jain, P.K., El-sayed, M.A.: Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J. Phys. Chem. C 111, 17451–17454 (2007)

    Article  Google Scholar 

  • Jule, L., et al.: Fano-like resonance and scattering in dielectric(core)-metal(shell) composites embedded in active host matrices. Phys. Status Solidi Basic Res. 252, 2707–2713 (2015)

    Article  ADS  Google Scholar 

  • Kajikawa, Y.A.K.: Optical Properties of Advanced Materials. Springer Series in Materials Science, London (2013)

    Google Scholar 

  • Kassahun, G.B.: High tunability of size dependent optical properties of ZnO@M@Au (M = SiO2, In2O3, TiO2) core/spacer/shell nanostructure. Adv. Nano Res. 2, 1–13 (2019)

    Article  Google Scholar 

  • Kim, M.R., et al.: Semiconductor and metallic core—shell nanostructures: synthesis and applications in solar cells and catalysis. Chem. A Eur. J. 20, 11256–11275 (2014)

    Article  Google Scholar 

  • Liu, M., Guyot-Sionnest, P.: Preparation and optical properties of silver chalcogenide coated gold nanorods. J. Mater. Chem. 16, 3942–3945 (2006)

    Article  Google Scholar 

  • Loo, C., et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Reasearch Treat. 3, 33–40 (2015)

    Article  Google Scholar 

  • Noguez, C.: Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 111, 3606–3619 (2007)

    Article  Google Scholar 

  • Oldenburg, S.J., et al.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998)

    Article  ADS  Google Scholar 

  • Oliver, A., et al.: Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation. Phys. Rev. 74, 245425 (2006)

    Article  Google Scholar 

  • Pal, U., Meléndrez, R., Chernov, V.: Thermoluminescence properties of ZnO and ZnO: Yb nanophosphors Thermoluminescence properties of ZnO and ZnO: Yb nanophosphors. Appl. Phys. Lett. 98, 148–151 (2016)

    Google Scholar 

  • Pan, T., Huang, J.P., Li, Z.Y.: Optical bistability in metal/dielectric composite with interfacial layer. Phys. B 301, 190–195 (2001)

    Article  ADS  Google Scholar 

  • Penninkhof, J.J., et al.: Optical properties of spherical and oblate spheroidal gold shell colloids optical properties of spherical and oblate spheroidal gold shell colloids. J. Phys. Chem. C 112, 4146–4150 (2008)

    Article  Google Scholar 

  • Pillai, S., et al.: Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl. Phys. Lett. 88, 16–18 (2006)

    Article  Google Scholar 

  • Piralaee, M., et al.: Modeling and optimizing the performance of plasmonic solar cells using effective medium theory. Phys. Lett. A 381, 489–493 (2016)

    Article  ADS  Google Scholar 

  • Piralaee, M., Asgari, A.: Modeling of optimum light absorption in random plasmonic solar cell using effective medium theory. Opt. Mater. 62, 399–402 (2016)

    Article  ADS  Google Scholar 

  • Sambou, A., et al.: Turnability of the plasmonic response of the gold nanoparticles in infrared region. Am. J. Nanomater. 4, 63–69 (2016)

    Google Scholar 

  • Senthilkumar, N.: Two step synthesis of ZnO/Ag and ZnO/Au core/shell nanocomposites: Structural, optical and electrical property analysis. J. Alloys Compd. 750, 171–181 (2018)

    Article  Google Scholar 

  • Shah, N., et al.: Effective role of magnetic core–shell nanocomposites in removing organic and inorganic wastes from water. Recent Pat. Nanotechnol. 10, 202–212 (2016)

    Article  Google Scholar 

  • Shahamirifard, S.A., et al.: Application of nanostructure ZnLI2 complex in construction of optical pH sensor. Appl. Organomet. Chem. 33, 1–11 (2017)

    Google Scholar 

  • Stuart, H.R., Hall, D.G.: Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73, 3815–3817 (1998)

    Article  ADS  Google Scholar 

  • Tanabe, K.: A simple optical model well explains plasmonic-nanoparticle-enhanced spectral photocurrent in optically thin solar cells. Nanoscale Res. Lett. 11, 236–245 (2016)

    Article  ADS  Google Scholar 

  • Wang, M., et al.: Subradiant plasmon modes in multilayer metal—Dielectric nanoshells. J. Phys. Chem. C 115, 20920–20925 (2011)

    Article  Google Scholar 

  • Wilcoxon, J.P., Abrams, B.L.: Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006)

    Article  Google Scholar 

  • Yang, N., Aoki, K., Nagasawa, H.: Thermal metallization of silver stearate-coated nanoparticles owing to the destruction of the shell structure. J. Phys. Chem. B. 108, 15027–15032 (2004)

    Article  Google Scholar 

  • Zeng, C., et al.: Fabrication of urchin-like Ag/ZnO hierarchical nano/microstructures based on galvanic replacement mechanism and their enhanced photocatalytic properties. Surf. Interface Anal. 49, 599–606 (2016)

    Article  Google Scholar 

  • Zhang, J., Zayats, A.: Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures. Opt. Express 21, 707–715 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported financially by the NSFC (11474246, 11750110415, 11850410442), Addis Ababa University (AAU) and Adama Science and Technology University (ASTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gashaw Beyene.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyene, G., Senbeta, T., Mesfin, B. et al. Plasmonic properties of spheroidal spindle and disc shaped core–shell nanostructures embedded in passive host-matrices. Opt Quant Electron 52, 157 (2020). https://doi.org/10.1007/s11082-020-2263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-2263-4

Keywords

Navigation