Skip to main content
Log in

Indoor visible light localization based on compressed sensing under matrix filling recovery

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the study of indoor visible light localization, a matrix-based fingerprint library construction method is used to recover the data in the offline phase. While in the online matching and positioning phase, the Stagewise Orthogonal Matching Pursuit algorithm in compressed sensing theory is improved and introduced into indoor visible light localization. After simulation, the average error is 0.027 m. Then we verify the advancement of this algorithm by comparing with other algorithms applied to visible light localization. The experimental verification shows that the error is only 0.029 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aminikashani, M., Gu, W., Kavehrad, M.: Indoor positioning with OFDM visible light communications. In: 2016 IEEE Consumer Communications & Networking Conference. IEEE (2016)

  • Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2015)

    Google Scholar 

  • Bartier, P.M., Keller, C.P.: Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 22(7), 795–799 (1996)

    Article  ADS  Google Scholar 

  • Blomgren, P., Chan, T.F.: Color TV: total variation methods for restoration of vector valued images. IEEE Trans. Image Process. 7(3), 304–309 (1998)

    Article  ADS  Google Scholar 

  • Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Press 4(6), 2053–2080 (2010)

    MathSciNet  MATH  Google Scholar 

  • Chen, Y.-A., Chang, Y.-T., Tseng, Y.-C., Chen, W.-T.: A framework for simultaneous message broadcasting using CDMA-Based visible light communications. IEEE Sensors J. 15(12), 6819–6827 (2015)

    Article  ADS  Google Scholar 

  • Chi, N., Shi, M.: Advanced modulation formats for underwater visible light communications. Chin. Opt. Lett. 16(12), 120603 (2018)

    Article  Google Scholar 

  • Cossu, G., et al.: A visible light location aided optical wireless system. In: 2011 IEEE Globecom Workshops (GC Wkshps). IEEE (2012)

  • Gu, W., Aminikashani, M., Deng, P., Kavehrad, M.: Impact of multipath reflections on the performances of indoor visible light positioning systems. J. Lightwave Technol. 34(10), 2578–2587 (2016)

    Article  ADS  Google Scholar 

  • Guan, W., Wu, Y., Wen, S.: Errata: high precision three-dimensional iterative indoor localization algorithm using code division multiple access modulation based on visible light communication. Opt. Eng. 55(11), 119801 (2016)

    Article  ADS  Google Scholar 

  • He, S., Chan, S.-H.G.: Wi-fi fingerprint-based indoor positioning recent advances and comparisons. IEEE Commun. Surv. Tutor. 18(1), 466–490 (2015)

    Article  Google Scholar 

  • Jung, S.-Y., Hann, S., Park, C.-S.: TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Trans. Consum. Electron. 57(4), 1592–1597 (2011)

    Article  Google Scholar 

  • Khalajmehrabadi, A., Gatsis, N., Akopian, D.: Modern WLAN fingerprinting indoor positioning methods and deployment challenges. IEEE Commun. Surv. Tutor. 19(3), 1974–2002 (2017)

    Article  Google Scholar 

  • Kim, H.-S., Kim, D.-R., Yang, S.-H., Son, Y.-H., Han, S.-K.: An indoor visible light communication positioning system using a RF carrier allocation technique. J. Lightwave Technol. 31(1), 134–144 (2013)

    Article  ADS  Google Scholar 

  • Krumm, J., Platt, J.: Minimizing calibration efforts for an indoor 802.11 device location measurement system. In: Nips (2003)

  • Kuo, S.-P., Tseng, Y.-C.: Discriminant minimization search for large-scale RF-based localization systems. IEEE. Trans. Mob. Comput. 10(2), 291–304 (2011)

    Article  Google Scholar 

  • Li, B.H., Salter, J., Dempster, A.G., Rizos, C.: Indoor positioning techniques based on wireless LAN. In: 1st IEEE International Conference on Wireless Broadband and Ultra Wideband Communications, Sydney, pp. 13–16 (2006)

  • Lou, P., Zhang, H.M., Zhang, X., Yao, M., Xu, Z.: Fundamental analysis for indoor visible light positioning system. In: 2012 1st IEEE International Conference on Communications in China Workshops, Bejing, pp. 59–63 (2012)

  • Needell, D., Tropp, J.A.: CoSAMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  • Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)

    Article  ADS  Google Scholar 

  • Pasha, M.A., Yuen, C., Hassan, N.U.: Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols. Electron. Lett. 51(1), 72–74 (2015)

    Article  Google Scholar 

  • Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, pp. 40–44 (1993)

  • Shi, B.S., Lian, Q.S., Chen, S.Z., Tian, Y., Fan, X.Y.: Coded diffraction imaging via double sparse regularization model. Digit. Signal Process. 79, 23–33 (2018)

    Article  MathSciNet  Google Scholar 

  • Swangmuang, N., Krishnamurthy, P.: An effective location fingerprint model for wireless indoor localization. Pervasive Mob. Comput. 4(6), 836–850 (2008)

    Article  Google Scholar 

  • Yang, J.F., Zhang, Y., Yin, W.T.: A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. IEEE J. Sel. Topics Signal Process 4(2), 288–297 (2010)

    Article  ADS  Google Scholar 

  • Zheng, Z.L., Zhang, H.X., Jia, J., Zhao, J.M., Guo, L., Fu, F.M., Yu, M.D.: Low-rank matrix recovery with discriminant regularization. In: Lect. Notes. Comput. Sci., vol. 7819(2), pp. 437–448 (2013)

  • Zsolczai, V., Szabo, G., Feher, G., et al.: Experimental investigation of multiplexing methods in visible light communication system for indoor positioning. In: 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Shao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Shao, J., Zuo, X. et al. Indoor visible light localization based on compressed sensing under matrix filling recovery. Opt Quant Electron 52, 206 (2020). https://doi.org/10.1007/s11082-020-02322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02322-8

Keywords

Navigation