Skip to main content
Log in

Mixed structures of optical breather and rogue wave for a variable coefficient inhomogeneous fiber system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Breathers and rogue waves are two special types of soliton and play significant role in optical fibers. In this work, the mixed breather and rogue wave solution is constructed for a variable coefficient inhomogeneous fiber system via the Darboux transformation method. The impacts on the mixed wave of the first- and second-order group velocity dispersions (GVD), are discussed, respectively. The spectral eigenvalue parameter control is also studied. The pulse wave width, amplitude and wave density can be controlled by the variable GVD functions and spectral eigenvalue parameter. Especially, two types of rogue wave solutions can be derived from the mixed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, San Diego (2007)

    MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009a)

    ADS  MATH  Google Scholar 

  • Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: How to excite a rogue wave. Phys. Rev. A 80, 043818 (2009b)

    ADS  Google Scholar 

  • Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)

    ADS  Google Scholar 

  • Arecchi, F.T., Bortolozzo, U., Montina, A., Residori, S.: Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys. Rev. Lett. 106, 153901 (2011)

    ADS  Google Scholar 

  • Becker, C., Stellmer, S., Soltan-Panahi, P., Dorscher, S., Baumert, M., Richter, E.M., Kronjager, J., Bongs, K., Sengstock, K.: Oscillations and interactions of dark and dark-bright solitons in Bose–Einstein condensates. Nat. Phys. 4, 496–501 (2008)

    Google Scholar 

  • Du, Z., Tian, B., Chai, H.P., Sun, Y.: Darboux transformations, solitons, breathers and rogue waves for the modified Hirota equation with variable coefficients in an inhomogeneous fiber. Opt. Quantum Electron. 50, 83 (2018)

    Google Scholar 

  • Dudley, J.M., Genty, G., Dias, F.: Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)

    ADS  Google Scholar 

  • Frisquet, B., Kibler, B., Millot, G.: Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3, 041032 (2013)

    Google Scholar 

  • Guo, B.L., Ling, L.M.: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28, 110202 (2011)

    ADS  Google Scholar 

  • Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    ADS  MATH  Google Scholar 

  • Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    ADS  Google Scholar 

  • He, J.S., Xu, S.W., Porsezian, K.: Rogue wave triggered at a critical frequency of a nonlinear resonant medium. Phys. Rev. E 93, 062201 (2016)

    ADS  MathSciNet  Google Scholar 

  • Husakou, A.V., Herrmann, J.: Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001)

    ADS  Google Scholar 

  • Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002)

    ADS  Google Scholar 

  • Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Google Scholar 

  • Kolpakov, S.A., Kbashi, H., Sergeyev, S.V.: Dynamics of vector rogue waves in a fiber laser with a ring cavity. Optica 3, 870–875 (2016)

    ADS  Google Scholar 

  • Kominis, Y.: Soliton dynamics in symmetric and non-symmetric complex potentials. Opt. Commun. 334, 265–272 (2015)

    ADS  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Solitons resonant behavior for a waveguide directional coupler system in optical fibers. Opt. Quantum Electron. 50, 270 (2018a)

    Google Scholar 

  • Li, B.Q., Ma, Y.L.: Rogue waves for the optical fiber system with variable coefficients. Optik 158, 177–184 (2018b)

    ADS  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Lax pair, Darboux transformation and Nth-order rogue wave solutions for a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Comput. Math. Appl. 77, 514–524 (2019a)

    MathSciNet  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Periodic and \(N\)-kink-like optical solitons for a generalized Schrödinger equation with variable coefficients in an inhomogeneous fiber system. Optik 179, 854–860 (2019b)

    ADS  Google Scholar 

  • Li, B.Q., Ma, Y.L., Yang, T.M.: The oscillating collisions between the three solitons for a dual-mode fiber coupler system. Superlattices Microstruct. 110, 126–132 (2017)

    ADS  Google Scholar 

  • Lin, X.G., Liu, W.J., Lei, M.: Oscillationg solitons in nonlinear optics. Pramana J. Phys. 86, 575–580 (2016)

    ADS  Google Scholar 

  • Liu, M., Luo, A.P., Luo, Z.C., Xu, W.C.: Dynamic trapping of a polarization rotation vector soliton in a fiber laser. Opt. Lett. 42, 330–333 (2017)

    ADS  Google Scholar 

  • Liu, M., Li, H., Luo, A.P., Cui, H., Xu, W.C., Luo, Z.C.: Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser. J. Opt. 20, 034010 (2018)

    ADS  Google Scholar 

  • Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)

    Google Scholar 

  • Ma, Y.L., Li, B.Q.: Doubly periodic waves, bright and dark solitons for a coupled monomode step-index optical fiber system. Opt. Quantum Electron. 50, 443 (2018)

    Google Scholar 

  • Messouber, A., Triki, H., Azzouzi, F., Zhou, Q., Biswas, A., Moshokoa, S.P., Belic, M.: Propagation properties of dipole-managed solitons through an inhomogeneous cubic-quintic-septic medium. Opt. Commun. 425, 64–70 (2018)

    ADS  Google Scholar 

  • Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    ADS  Google Scholar 

  • Park, I.Y., Kim, S., Choi, J., Lee, D.H., Kim, Y.J., Kling, M.F., Stockman, M.I., Kim, S.W.: Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics 5, 678–682 (2011)

    ADS  Google Scholar 

  • Sekikawa, T., Kosuge, A., Kanai, T., Watanabe, S.: Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004)

    ADS  Google Scholar 

  • Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    ADS  Google Scholar 

  • Suret, P., El Koussaifi, R., Tikan, A.: Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016)

    ADS  Google Scholar 

  • Wang, Y., Li, L.: Optical amplification and reshaping based on rogue wave in the femtosecond regime. Rom. J. Phys. 62, 205 (2017)

    Google Scholar 

  • Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell–Bloch equations. Ann. Phys. 359, 97–114 (2015)

    MATH  Google Scholar 

  • Wang, Y., Song, L.J., Li, L.: Optical amplification and reshaping based on the Peregrine rogue wave. Appl. Opt. 55, 7241–7246 (2016)

    ADS  Google Scholar 

  • Wen, X.Y., Yan, Z.Y.: Higher-order rational solitons and rogue-like wave solutions of the (2+1)-dimensional nonlinear fluid mechanics equations. Commun. Nonlinear Sci. 43, 311–329 (2017)

    MathSciNet  Google Scholar 

  • Xie, X.Y., Tian, B., Wang, Y.F.: Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber. Ann. Phys. 362, 884 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Yan, Z.Y.: Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross–Pitaevskii equations with varying potentials. Nonlinear Dyn. 79, 2515–2529 (2015)

    MathSciNet  Google Scholar 

  • Yu, X.L., Cao, C.B., Zhu, H.S., Li, Q.S., Liu, C.L., Gong, Q.H.: Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties. Adv. Funct. Mater. 17, 1397–1401 (2007)

    Google Scholar 

  • Yu, W.T., Zhou, Q., Mirzazadeh, M., Liu, W.J., Biswas, A.: Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. J. Adv. Res. 15, 69–76 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China Grant No. (61702020), Beijing Natural Science Foundation Grant No. (4172013) and Beijing Natural Science Foundation-Haidian Primitive Innovation Joint Fund Grant No. (L182007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Qing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, WY., Li, BQ. Mixed structures of optical breather and rogue wave for a variable coefficient inhomogeneous fiber system. Opt Quant Electron 51, 352 (2019). https://doi.org/10.1007/s11082-019-2060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2060-0

Keywords

Navigation