Skip to main content
Log in

Alkali-metal-embedded in monolayer MoS2: optical properties and work functions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Embedding alkali-metal in monolayer MoS2 has been investigated by using first principles with density functional theory. The calculation of the electronic and optical properties indicates that alkali-metal was embedded in monolayer MoS2 appearing almost metallic behavior, and the MoS2 layer shows clear p-type doping behavior. The covalent bonding appears between the alkali-metal atoms and defective MoS2. More importantly, embedding alkali-metal can increase the work function for monolayer MoS2. Furthermore, the absorption spectrum of monolayer MoS2 is red shifted because of alkali metal embedding. Accordingly, this study will provide the theoretical basis for producing the alkali-metal-doped monolayer MoS2 radiation shielding and photoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bollinger, M.V., Lauritsen, J.V., Jacobsen, K.W., Nørskov, J.K., Helveg, S., Besenbacher, F.: One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87, 196803–196803 (2001)

    Article  ADS  Google Scholar 

  • Chandrakumar, K.R., Ghosh, S.K.: Alkali-metal-induced enhancement of hydrogen adsorption in c60 fullerene: an ab initio study. Nano Lett. 8, 13–19 (2008)

    Article  ADS  Google Scholar 

  • Chen, P., Wu, X., Lin, J., Tan, K.L.: High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999)

    Article  Google Scholar 

  • Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  • Chou, J.P., Chen, H.Y.T., Hsing, C.R., Chang, C.M., Cheng, C., Wei, C.M.: 13-atom metallic clusters studied by density functional theory: dependence on exchange-correlation approximations and pseudopotentials. Phys. Rev. B 80, 165412–165412 (2009a)

    Article  ADS  Google Scholar 

  • Chou, J.P., Pai, W.W., Kuo, C.C., Lee, J.D., Lin, C.H., Wei, C.M.: Promotion of CO oxidation on bimetallic Au–Ag(110) surfaces: a combined microscopic and theoretical study. J. Phys. Chem. C 113, 13151–13159 (2009b)

    Article  Google Scholar 

  • Cui, Z., Ke, X., Li, E., Liu, T.: Electronic and optical properties of titanium-doped GaN nanowires. Mater. Des. 96, 409–415 (2016)

    Article  Google Scholar 

  • Cui, Z., Li, E., Ke, X., Zhao, T., Yang, Y., Ding, Y., Liu, T., Qu, Y., Xu, S.: Adsorption of alkali-metal atoms on GaN nanowires photocathode. Appl. Surf. Sci. 423, 829–835 (2017)

    Article  ADS  Google Scholar 

  • Cui, Z., Wang, X., Ding, Y., Li, M.: Exploration work function and optical properties of monolayer SnSe allotropes. Superlattices Microstruct. 114, 251–258 (2018)

    Article  ADS  Google Scholar 

  • Fortin, E., Sears, W.M.: Photovoltaic effect and optical absorption in MoS2. J. Phys. Chem. Solids 43, 881–884 (1982)

    Article  ADS  Google Scholar 

  • Hu, K.H., Hu, X.G., Sun, X.J.: Morphological effect of MoS2, nanoparticles on catalytic oxidation and vacuum lubrication. Appl. Surf. Sci. 256, 2517–2523 (2010)

    Article  ADS  Google Scholar 

  • Kim, Y., Lieber, C.M.: Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale. Science 257, 375–377 (1992)

    Article  ADS  Google Scholar 

  • Kresse, G., Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  • Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–558 (1993)

    Article  ADS  Google Scholar 

  • Kumar, A., Ahluwalia, P.K.: Tunable dielectric response of transition metals dichalcogenides MX2, (M = Mo, W; X = S, Se, Te): effect of quantum confinement. Phys. B 407, 4627–4634 (2012)

    Article  ADS  Google Scholar 

  • Lee, R.S., Kim, H.J., Fischer, J.E., Thess, A., Smalley, R.E.: Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388, 255–257 (1997)

    Article  ADS  Google Scholar 

  • Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  • Liu, W., Zheng, W.T., Jiang, Q.: First-principles study of the surface energy and work function of III-V semiconductor compounds. Phys. Rev. B. 75, 235322–235322 (2007)

    Article  ADS  Google Scholar 

  • Mitsuhashi, R., Suzuki, Y., Yamanari, Y., Mitamura, H., Kambe, T., Ikeda, N., Okamoto, H., Fujiwara, A., Yamaji, M., Kawasaki, N., Maniwa, Y., Kubozono, Y.: Superconductivity in alkali-metal-doped picene. Nature 464, 76–79 (2010)

    Article  ADS  Google Scholar 

  • Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T.: Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)

    Article  ADS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  • Park, S.Y., Kim, B.J., Kim, K., Kang, M.S., Lim, K.H., Lee, T.I., Myoung, J.M., Baik, H.K., Cho, J.H., Kim, Y.S.: Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv. Mater. 24, 834–838 (2012)

    Article  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3865 (1996)

    Article  ADS  Google Scholar 

  • Qian, X., Liu, J., Fu, L., Li, J.: Cheminform abstract: quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014)

    Article  ADS  Google Scholar 

  • Reshak, A.H., Auluck, S.: Calculated optical properties of 2H-MoS2, intercalated with lithium. Phys. Rev. B 68, 125101–125101 (2003)

    Article  ADS  Google Scholar 

  • Saáedi, A., Yousefi, R., Jamali-Sheini, F., Zak, A.K., Cheraghizade, M., Mahmoudian, M.R., Dezaki, A.S.: XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions. Physica E 79, 113–118 (2016)

    Article  ADS  Google Scholar 

  • Si, Y.L., Kim, U.J., Chung, J.G., Lee, S.Y., Kim, U.J., Chung, J., Nam, H., Jeong, H.Y., Han, G.H., Kim, H., Oh, H.M., Lee, H., Kim, H., Roh, Y.G., Kim, J., Hwang, S.W., Park, Y., Lee, Y.H.: Large Work Function Modulation of Monolayer MoS2 by Ambient Gases. ACS Nano 10, 6100–6107 (2016)

    Article  Google Scholar 

  • Sun, M., Tang, W., Ren, Q., Wang, S.K., Yu, J., Du, Y.: A first-principles study of light non-metallic atom substituted blue phosphorene. Appl. Surf. Sci. 356, 110–114 (2015)

    Article  ADS  Google Scholar 

  • Wan, C., Gu, X., Feng, D., Itoh, T., Wang, Y., Sasaki, H., Yang, R.: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015)

    Article  ADS  Google Scholar 

  • Wang, Q.H., Kalantarzadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  • Wen, M.Q., Xiong, T., Zang, Z.G., Wei, W., Tang, X.S., Dong, F.: Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide. Opt. Express 24(10), 10205–10212 (2016)

    Article  ADS  Google Scholar 

  • Xu, W.B., Li, P., Li, S.S., Huang, B.J., Zhang, C.W., Wang, P.J.: A novel optical property induced by Mo, S vacancy and V-doped in monolayer MoS2. Physica E 73, 83–88 (2015)

    Article  ADS  Google Scholar 

  • Zeng, X., Zhou, T., Leng, C., Zang, Z., Wang, M., Hu, W., Zhou, M.: Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer. J. Mater. Chem. A 5(33), 17499–17505 (2017)

    Article  Google Scholar 

  • Zhao, J., Han, J., Lu, J.P.: Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles. Phys. Rev. B 65, 193401–193401 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11747032 and 51704231), Natural Science Foundation Research Project of Shaanxi Province Youth Fund (No. 2017JQ6065), Innovation Project of Key Industry Chain in Shaanxi Province (No. 2017ZDCXL-GY-06-01), Project of Key Projects of Research and Development in Shaanxi Province (No. S2018-YF-ZDGY-0106), the Science and Technology Project of Xi’an (No. 2017080CG/RC043(XALG015)). First-principles calculations were carried out on the Chen Qingyun’s group clusters at the Southwest University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Cui or Yingchun Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Wang, X., Ding, Y. et al. Alkali-metal-embedded in monolayer MoS2: optical properties and work functions. Opt Quant Electron 50, 348 (2018). https://doi.org/10.1007/s11082-018-1612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1612-z

Keywords

Navigation