Skip to main content
Log in

On nonlocal complex Maxwell equations and wave motion in electrodynamics and dielectric media

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A formulation of Maxwell’s equations on the complex domain is presented in this paper which is based on the extension of the nonlocal-in-time kinetic energy approach recently introduced by Suykens. New wave equations with time-dependent source terms are obtained in a uniform optical medium. A number of physical effects were raised and their implications in classical electrodynamics besides to the propagation of waves in dielectric media are analyzed and discussed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Addazi, A., Esposito, G.: Nonlocal quantum field theory without acausality and nonunitarity at quantum level: is SUSY the key. Int. J. Mod. Phys. A 30, 1550103–1550136 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Alber, S., Marsden, J.E.: Semiclassical monodromy and the spherical pendulum as a complex Hamiltonian system. Fields Inst. Commun. 8, 1–18 (1996)

    MathSciNet  MATH  Google Scholar 

  • Anco, S.C., Bluman, G.: Nonlocal symmetries and nonlocal conservation laws of Maxwell equations. J. Math. Phys. 38, 3508–3532 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arbab, A.I.: On the generalized Maxwell’s equations and their prediction of electroscalar wave. Prog. Phys. 2, 8–13 (2009)

    MathSciNet  Google Scholar 

  • Arbab, A.I.: The consequences of complex Lorentz force and violation of Lorentz gauge condition (2013a). arXiv:1302.0695

  • Arbab, A.I.: Complex Maxwell equations. Chin. Phys. B 22, 030301–030306 (2013b)

    Article  ADS  Google Scholar 

  • Arbab, A.I.: Electric and magnetic fields due to massive photons and their consequences. Prog. Electromagn. Res. M 34, 153–161 (2014a)

    Article  Google Scholar 

  • Arbab, A.I.: The extended gauge transformations. Prog. Electromagn. Res. M 39, 107–114 (2014b)

    Article  Google Scholar 

  • Arbab, A.I.: Maxwell’s equations with complex electric and magnetic fields due to massive photon. University of Khartoum Dspace, Staff Publication (2015)

  • Aste, A.: Complex representation theory of the electromagnetic field. J. Geom. Symmetry Phys. 28, 47–58 (2012)

    MathSciNet  MATH  Google Scholar 

  • Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Bender, C.M., Holm, H.D., Hook, D.W.: Complexified dynamical systems. J. Phys. A 40, F793–F804 (2007a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bender, C.M., Holm, H.D., Hook, D.W.: Complex trajectories of a simple pendulum. J. Phys. A 40, F81–F90 (2007b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boris, A.A., Rydh, A., Golod, T., Motzkau, H., Klushin, A.M., Krasnov, V.M.: Evidence of nonlocal electrodynamics in planar Josephson junctions. Phys. Rev. Lett. 111, 117002–117006 (2013)

    Article  ADS  Google Scholar 

  • Brandt, E.H.: Non-local electrodynamics in a superconductor with spatially varying gap parameter. Phys. Lett. A 39, 227–228 (1972)

    Article  ADS  Google Scholar 

  • Bulashenko, O.M., Garcia, M.J., Bonilla, L.L.: Chaotic dynamics of electric-field domains in periodically driven superlattices. Phys. Rev. B 53, 10008–10018 (1996)

    Article  ADS  Google Scholar 

  • Cao, R.: Traveling wave solutions for nonlinear Schrödinger equation with a higher-order dispersive term. Abstr. Appl. Anal. 2013, ID979252 (2013)

    Google Scholar 

  • Cho, K.: Nonlocal theory of radiation–mater interaction: boundary conditions-less treatment of Maxwell equations. Prog. Theor. Phys. Suppl. 106, 225–233 (1991)

    Article  ADS  Google Scholar 

  • de Bruyn Ouboter, R.: On massive photons inside a superconductor as follows from London and Ginzburg–Landau theory. Low Temp. Phys. 43, 889–891 (2017)

    Article  ADS  Google Scholar 

  • Efimov, G.V.: On the construction of nonlocal quantum electrodynamics. Ann. Phys. 71, 466–485 (1972)

    Article  ADS  Google Scholar 

  • El-Nabulsi, R.A.: Lagrangian and Hamiltonian dynamics with imaginary time. J. Appl. Anal. 18, 283–295 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theor. Dyn. Syst. 13, 149–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • El-Nabulsi, R.A.: On nonlocal complexified Schrödinger equation and emergence of discrete quantum mechanics. Quantum Stud. Math. Found. 3, 327–335 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • El-Nabulsi, R.A.: Generalized Klein-Gordon and Dirac equations from nonlocal kinetic energy approach. Zeitsch. für Naturforschung A 71, 817–821 (2016b)

    ADS  Google Scholar 

  • El-Nabulsi, R.A.: Complex backward–forward derivative operator in non-local-in-time Lagrangians mechanics. Qual. Theor. Dyn. Syst. 16, 223–234 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  • El-Nabulsi, R.A.: On maximal acceleration and quantum acceleratum operator in quantum mechanics. Quantum Stud. Math. Found. (2017b). https://doi.org/10.1007/s40509-017-0142-x

    Google Scholar 

  • El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube. Int. J. Nonlinear Mech. 93, 65–81 (2017c)

    Article  ADS  Google Scholar 

  • El-Nabulsi, R.A.: Dynamics of pulsatile flows through microtube from nonlocality. Mech. Res. Commun. 86, 18–26 (2017d)

    Article  Google Scholar 

  • El-Nabulsi, R.A.: Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator. Phys. E: Low Dimens. Syst. Nanostruct. 98, 90–104 (2018)

    Article  ADS  Google Scholar 

  • El-Nabulsi, R.A., Soulati, T.B., Rezazadeh, H.C.: Non-standard complex Lagrangian dynamics. J. Adv. Res. Dyn. Control Syst. 5, 50–62 (2012)

    MathSciNet  Google Scholar 

  • Fear, E.C., Stuchly, M.A.: Modelling assemblies of biological cells exposed to electric fields. IEEE Trans. Biomed. Eng. 45, 1259–1271 (1998)

    Article  Google Scholar 

  • Feynman, R.P.: Space–time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Field, J.H.: Derivation of the Lorentz force law and the magnetic field concept using an invariant formulation of the Lorentz transformation. Phys. Scr. 73, 639–647 (2006)

    Article  ADS  MATH  Google Scholar 

  • Friedman, Y.: The wave-function description of the electromagnetic field. J. Phys: Conf. Ser. 437, 012018–012038 (2013)

    Google Scholar 

  • Friedman, Y., Danziger, M.M.: The complex Faraday tensor for relativistic evolution of a charged particle in a constant field. PIERS Online 4, 531–535 (2008)

    Article  Google Scholar 

  • Friedman, Y., Ostapenko, V.: The complex pre-potential and the Aharonov–Bohm effect. J. Phys. A: Math. Theor. 43, 405305–405314 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, Y., Gwertzman, S.: The scalar complex potential of the electromagnetic field (1993). arXiv:0906.0930

  • Goldstein, H.: Classical Mechanics, 1st edn. Addison-Wesley Press, Boston (1950)

    MATH  Google Scholar 

  • Gomis, J., Kamimura, K., Llosa, J.: Hamiltonian formalism for space–time noncommutative theories. Phys. Rev. D 63(4), 045003 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Gordeziani, D.G.: On some initial conditions for parabolic equations, Reports of the Enlarged Session of the Seminar of I. Vekua Inst. Appl. Math. 4, 57–60 (1989)

    Google Scholar 

  • Gordeziani, D.G.: On one problem for the Navier–Stokes equation. Abstr. Contin. Mech. Relat. Probl. Anal. Tbilisi 83–85 (1991)

  • Gordeziani, D.G.: On solution of in time nonlocal problems for some equations of mathematical physics. ICM-94 Abstr. Short Commun. 240 (1994)

  • Gordeziani, D.G., Grigalashvili, Z.: Non-local problems in time for some equations of mathematical physics. Dokl. Semin. Inst. Prikl. Mat. Im. I. N. Vekua 22, 108–114 (1993)

    MathSciNet  Google Scholar 

  • Griffiths, J.D.: Introduction to Electrodynamics, 3rd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  • Gsponer, A.: Comment on formulating and generalizing Dirac’s, Proca’s, and Maxwell’s equations with biquaternions or Clifford numbers. Found. Phys. Lett. 14, 77–85 (2001)

    Article  MathSciNet  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1975)

    MATH  Google Scholar 

  • Kamalov, T.F.: Model of extended mechanics and non-local hidden variables for quantum theory. J. Russ. Laser Res. 30(5), 466–471 (2009)

    Article  Google Scholar 

  • Kamalov, T.F.: Physics of non-inertial reference frames. AIP Conf. Proc. 1316, 455–458 (2010a). arXiv:0708.1584

    Article  ADS  Google Scholar 

  • Kamalov, T.F.: Simulation the nuclear interaction. In: Studenikin, A.I. (ed.) Particle Physics on the Eve of LHC, Proceedings of Thirteenth Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, 23–29 Aug 2007, pp. 439–442. World Scientific, Singapore (2010b). https://doi.org/10.1142/9789812837592_0076

    Google Scholar 

  • Kamalov, T.F.: Classical and quantum-mechanical axioms with the higher time derivative formalism. J. Phys. Conf. Ser. 442, 012051 (2013)

    Article  Google Scholar 

  • Kamalov, T.F.: The systematic measurement errors and uncertainty relation. New Technologies MSOU 5, 10–12 (2006). (in Russian, English version: arXiv:quant-ph/0611053)

  • Kaushal, R.S.: Classical and quantum mechanics of complex Hamiltonian systems: an extended complex phase space approach. PRAMANA J. Phys. 73, 287–297 (2009)

    Article  ADS  Google Scholar 

  • Kok, P.: Advanced Electrodynamics. Lectures given at The University of Sheffield, August (2016)

  • Landau, L.D., Lifschitz, E.M.: The Classical Theory of Fields, 3rd edn. Butterworth-Heinemann, Oxford (1993)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, p. 249. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  • Li, C.: Nonlinear Optics: Principles and Applications. Springer, Singapore (2017)

    Book  Google Scholar 

  • Li, Z.-Y., Fu, J.-L., Chen, L.-Q.: Euler–Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system. Phys. Lett. A 374, 106–109 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Markushevich, A.I.: Theory of Functions of a Complex Variable. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

  • Mashhoon, B.: Vacuum electrodynamics of accelerated systems: nonlocal Maxwell equations. Annalen Phys. 12, 586–598 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mashhoon, B.: Nonlocal electrodynamics of rotating systems. Phys. Rev. A 72, 052105–052128 (2005)

    Article  ADS  Google Scholar 

  • Munteanu, G.: An extension of electrodynamics theory to the complex Lagrange geometry. Hypercomplex Numb. Geom. Phys. 2, 65–70 (2007)

    Google Scholar 

  • Muralidhar, K.: Complex vector formalism of harmonic oscillator in geometric algebra: particle mass, spin and dynamics in complex vector space. Found. Phys. 44, 266–295 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Muralidhar, K.: Algebra of complex vectors and applications in electromagnetic theory and quantum mechanics. Mathematics 2015, 781–842 (2015)

    Article  MATH  Google Scholar 

  • Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  • Nemilov, S.V.: The results of application of Maxwell’s equations in glass science. Glass Phys. Chem. 40, 473–485 (2014)

    Article  Google Scholar 

  • Newman, E.T.: Maxwell’s equations and complex Minkowski space. J. Math. Phys. 14, 102–103 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • Newman, E.T.: Maxwell fields and shear-free null geodesic congruences. Class. Quantum Grav. 21, 3197–3222 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nottale, L.: Fractal Space–Time and Microphysics: Towards a Theory of Scale Relativity. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  • Peatross, J., Ware, M.: Physics of Light and Optics. Brigham Young University, BYU Bookstore (2015)

  • Phat, T.H.: Nonlocal quantum electrodynamics. Acta Phys. Polon. B 4, 311–328 (1973)

    MathSciNet  Google Scholar 

  • Phelan, D., Stocka, C., Rodriguez-Rivera, J.A., Chia, S., Leão, J., Long, X., Xie, Y., Bokov, A.A., Ye, Z.G., Ganesh, P., Gehring, P.M.: Role of random electric fields in relaxors. PNAS 111, 1754–1759 (2014)

    Article  ADS  Google Scholar 

  • Pohjanpelto, J.: Symmetries, conservation laws, and Maxwell’s equations. In: Barrett, T.W., Grimes, D.M. (eds.) Advanced Electromagnetism: Foundations, Theory and Applications. World Scientific, Singapore (1995)

    Google Scholar 

  • Portela, J.S.E., Viana, R.L., Caldas, I.L.: Chaotic magnetic field lines in tokamaks with ergodic limiters. Phys. A 317, 411–431 (2003)

    Article  Google Scholar 

  • Rai Dastidar, T.K.: In: Chaghtai, M.S.Z. (ed.) Advances in Atomic and Molecular Physics, p. 49. Today’s and Tomorrow’s Publishers, New Delhi (1992)

    Google Scholar 

  • Rai Dastidar, T.K., Rai Dastidar, K.: A model of nonlocal quantum electrodynamics: time’s arrow and EPR-like quantum correlation. Mod. Phys. Lett. A 13, 1265–1280 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Ram, A.K., Dasgupta, B.: Chaotic magnetic fields due to asymmetric current configurations-modeling cross-field diffusion of charged particles in cosmic rays. Eos Trans. AGU 88(52), Fall Meet. Suppl. (2007). Abstract # NG21B-052

  • Sbitnev, V.I.: Bohmian trajectories and the path integral paradigm. Complexified Lagrangian mechanics. Int. J. Bifurc. Chaos 19, 2335–2346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Shankar, R.: Principles of Quantum Mechanics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  • Simon, J.Z.: Higher-derivative Lagrangians, nonlocality, problems, and solutions. Phys. Rev. D 41, 3720–3733 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Simon, J.Z.: Higher derivative expansions and non-locality. Ph.D. thesis, University of California, Santa Barbara, August (1990)

  • Stecki, J.: On the kinetic equation nonlocal in time for the generalized self-diffusion process. J. Comput. Phys. 7, 547–553 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  • Suykens, J.A.K.: Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)

    Article  ADS  MATH  Google Scholar 

  • Vestgarden, J.I., Johansen, T.H.: Modelling nonlocal electrodynamics in superconducting films: the case of a concave corner. Supercond. Sci. Technol. 25, 104001–104008 (2012)

    Article  ADS  Google Scholar 

  • Vestgarden, J.I., Mikheenko, P., Galperin, Y.M., Johansen, T.H.: Nonlocal electrodynamics of normal and superconducting films. New J. Phys. 15, 093001–093026 (2013)

    Article  ADS  Google Scholar 

  • Viana, R.L.: Chaotic magnetic field lines in a Tokamak with resonant helical windings. Chaos Solitons Fractals 11, 765–778 (2000)

    Article  ADS  MATH  Google Scholar 

  • Wheeler, N.: Electrodynamics. Lectures given at Reed College (2002)

  • Yu, T.: Lagrangian formulation of the electromagnetic field. Talk given at the University of Chicago (2012)

Download references

Acknowledgements

The author would like to thank the anonymous referees for their useful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. On nonlocal complex Maxwell equations and wave motion in electrodynamics and dielectric media. Opt Quant Electron 50, 170 (2018). https://doi.org/10.1007/s11082-018-1436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1436-x

Keywords

Navigation