Skip to main content
Log in

New solutions for conformable fractional Nizhnik–Novikov–Veselov system via \(G'/G\) expansion method and homotopy analysis methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to find the exact and approximate analytical solution of Nizhnik–Novikov–Veselov system which may be considered as a model for an incompressible fluid with newly defined conformable derivative by using \(G'/G\) expansion method and homotopy analysis method (HAM) respectively. Authors used conformable derivative because of its applicability and lucidity. It is known that, the NNV system of equations is an isotropic Lax integrable extension of the well-known KdV equation and has physical significance. Also, NNV system of equations can be derived from the inner parameter-dependent symmetry constraint of the KP equation. Then the exact solutions obtained by using \(G'/G\) expansion method are compared with the approximate analytical solutions attained by employing HAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdeljawad, T.: On conformable fractional calulus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  • Aminikhah, H., Sheikhani, A.H.R., Rezazadeh, H.: Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives. Sci. Iran. Trans. B Mech. Eng. 23, 1048–1054 (2016)

    Google Scholar 

  • Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015)

    Article  MathSciNet  Google Scholar 

  • Benkhettoua, N., Hassania, S., Torres, D.F.M.: A conformable fractional calculus on arbitrary time scales. J. King Saud Univ.-Sci 28, 93–98 (2016)

    Article  Google Scholar 

  • Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)

    Article  MathSciNet  Google Scholar 

  • Eslami, M.: Solutions for space-time fractional (2+1)-dimensional dispersive long wave equations. Iran. J. Sci. Technol. Trans. A: Sci. (2016). doi:10.22099/ijsts.2016.3524

  • Eslami, M., Rezazadeh, H.: The First integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016). doi:10.1007/s10092-015-0158-8

    Article  MathSciNet  MATH  Google Scholar 

  • Gökdoğan, A., Ünal, E., Çelik, E.: Existence and uniqueness theorems for sequential linear conformable fractional differential equations. Miskolc Math. Notes 17, 267–279 (2016)

    Article  MathSciNet  Google Scholar 

  • Hammad, M.A., Khalil, R.: Conformable fractional heat equation. Int. J. Pure Appl. Math. 94, 215–221 (2014)

    Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  • Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  • Korkmaz, A., Hosseini, K.: Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods. Opt. Quant. Electron. 49, 278 (2017)

    Article  Google Scholar 

  • Kurt, A., Cenesiz, Y., Tasbozan, O.: On the solution of Burgers equation with the new fractional derivative. Open Phys. 13, 355–360 (2015)

    Article  Google Scholar 

  • Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D thesis, Shanghai Jiao Tong University Shanghai (1992)

  • Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  • Liao, S.J.: A general approach to get series solution of non-similarity boundary-layer flows. Commun. Nonlinear Sci. Numer. Simulat. 14, 2144–2159 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2(4), 140–144 (2011)

    Google Scholar 

  • Ma, W.X.: A refined invariant subspace method and applications to evolution equations. Sci. China Math. 55(9), 1–10 (2012)

    Article  MathSciNet  Google Scholar 

  • Ma, W.X.: Bilinear equations, bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 411(1), 012021 (2013)

    Article  Google Scholar 

  • Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non-Linear Mech. 31(3), 329–338 (1996)

    Article  MathSciNet  Google Scholar 

  • Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the 3+ 1 dimensional Jimbo–Miwa equation. Chaos, Solitons Fractals 42(3), 1356–1363 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 065003 (2010)

    Article  ADS  Google Scholar 

  • Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  • Neirameh, A.: New soliton solutions to the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity. SeMA J. 1–15 (2015). doi:10.1007/s40324-016-0070-4

    Article  MathSciNet  Google Scholar 

  • Neirameh, A.: Topological soliton solutions to the coupled Schrodinger–Boussinesq equation by the SEM. Optik-Int. J. Light Electr. Opt. 126, 4179–4183 (2015)

    Article  Google Scholar 

  • Neirameh, A.: Binary simplest equation method to the generalized Sinh–Gordon equation. Optik-Int. J. Light Electr. Opt. 126, 4763–4770 (2015)

    Article  Google Scholar 

  • Neirameh, A.: New analytical solutions for the coupled nonlinear Maccari’s system. Alex. Eng. J. 55, 2839–2847 (2016)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)

    MATH  Google Scholar 

  • Rezazadeh, H., Ziabarya, B.P.: Sub-equation method for the conformable fractional generalized kuramoto sivashinsky equation. Comput. Res. Progress Appl. Sci. Eng. 2, 106–109 (2016)

    Google Scholar 

  • Rezazadeh, H., Khodadad, F.S., Manafian, J.: New structure for exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation via conformable fractional derivative. Appl. Appl. Math. Int. J. 12, 405–414 (2017)

    MathSciNet  MATH  Google Scholar 

  • Rezazadeh, H., Aminikhah, H., Sheikhani, A.H.R.: Stability analysis of conformable fractional systems. Iran. J. Numer. Anal. Optim. 7, 13–32 (2017)

    MATH  Google Scholar 

  • Taghizadeh, N., Neirameh, A.: New complex solutions for some special nonlinear partial differential systems. Comput. Math. Appl. 62, 2037–2044 (2011)

    Article  MathSciNet  Google Scholar 

  • Wang, M., Li, X., Zhang, J.: The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo. 1–15 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, A., Tasbozan, O. & Baleanu, D. New solutions for conformable fractional Nizhnik–Novikov–Veselov system via \(G'/G\) expansion method and homotopy analysis methods. Opt Quant Electron 49, 333 (2017). https://doi.org/10.1007/s11082-017-1163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1163-8

Keywords

Mathematics Subject Classification

Navigation