Skip to main content
Log in

A simple humidity sensor utilizing air-gap as sensing part of the Mach–Zehnder interferometer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A simple high-resolution refractive index (RI) and phase sensor has been demonstrated and the results numerically verified. A free space gap is employed in one arm of a Mach–Zehnder interferometer (MZI) to serve as the sensing mechanism with a physical spacing of 1.4 mm. The propagation constant of transmitted light in the MZI’s gap changes due to the small variation in the ambient RI that will further shift the optical phase of the signal. A free space optical delay line is embedded within the MZI’s other arm to set the phase reference point and compensate for variations in the optical phase difference. The ambient RI is computed by measuring the phase shift in the transmission spectrum A high-resolution sensing of 0.8 pm/%RH corresponds to phase change of 0.012°/%RH has been achieved in 1520 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad, H., Amiri, I., Zulkifli, A., Hassan, H., Safaei, R., Thambiratnam, K.: Stable dual-wavelength erbium-doped fiber laser using novel fabricated side-polished arc-shaped fiber with deposited ZnO nanoparticles. Chin. Opt. Lett. 15(1), 011403 (2017a)

    Article  ADS  Google Scholar 

  • Ahmad, H., Safaei, R., Rezayi, M., Amiri, I.: Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses. Laser Phys. Lett. 14(8), 085001 (2017b)

    Article  ADS  Google Scholar 

  • Amiri, I., Ali, J.: Optical quantum generation and transmission of 57–61 GHz frequency band using an optical fiber optics. J. Comput. Theor. Nanosci. 11(10), 2130–2135 (2014)

    Article  Google Scholar 

  • Amiri, I., Soltanian, M., Alavi, S., Ahmad, H.: Multi wavelength mode-lock soliton generation using fiber laser loop coupled to an add-drop ring resonator. Opt. Quant. Electron. 47(8), 2455–2464 (2015)

    Article  Google Scholar 

  • Bhatia, V., Vengsarkar, A.M.: Optical fiber long-period grating sensors. Opt. Lett. 21(9), 692–694 (1996)

    Article  ADS  Google Scholar 

  • Cho, T.-S., Choi, K.-S., Seo, D.-C., Kwon, I.-B., Lee, J.-R.: Novel fiber optic sensor probe with a pair of highly reflected connectors and a vessel of water absorption material for water leak detection. Sensors 12(8), 10906–10919 (2012)

    Article  Google Scholar 

  • Corres, J.M., Matias, I.R., Hernaez, M., Bravo, J., Arregui, F.J.: Optical fiber humidity sensors using nanostructured coatings of SiO nanoparticles. IEEE Sens. J. 8(3), 281–285 (2008)

    Article  Google Scholar 

  • Fuke, M.V., Vijayan, A., Kanitkar, P., Aiyer, R.: Optical humidity sensing characteristics of Ag-polyaniline nanocomposite. IEEE Sens. J. 9(6), 648–653 (2009)

    Article  Google Scholar 

  • Khijwania, S.K., Srinivasan, K.L., Singh, J.P.: An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity. Sens. Actuators B Chem. 104(2), 217–222 (2005)

    Article  Google Scholar 

  • Korenko, B., Rothhardt, M., Hartung, A., Bartelt, H.: Novel fiber-optic relative humidity sensor with thermal compensation. Sensors 12004, 1 (2015a)

    Google Scholar 

  • Korenko, B., Rothhardt, M., Hartung, A., Bartelt, H.: Novel fiber-optic relative humidity sensor with thermal compensation. IEEE Sens. J. 15(10), 5450–5454 (2015b). doi:10.1109/JSEN.2015.2444100

    Article  Google Scholar 

  • Li, Y., Tong, L.: Mach–Zehnder interferometers assembled with optical microfibers or nanofibers. Opt. Lett. 33(4), 303–305 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Liao C, Wang D, He X, Yang M (2011) Twisted optical microfiber for refractive index sensing. In: 21st International conference on optical fibre sensors (OFS21). International Society for Optics and Photonics, p 77534

  • Lou, J., Wang, Y., Tong, L.: Microfiber optical sensors: a review. Sensors 14(4), 5823–5844 (2014)

    Article  Google Scholar 

  • Mathew, J., Semenova, Y., Rajan, G., Farrell, G.: Humidity sensor based on a photonic crystal fiber interferometer. Electron. Lett. 46(19), 1341–1343 (2010)

    Article  Google Scholar 

  • Pereira, F., Hallett, A.H.: A new double beam optical lever refractometer and the variation of the refractive index of NaCl with temperature. Rev. Sci. Instrum. 42(4), 490–493 (1971)

    Article  ADS  Google Scholar 

  • Polynkin, P., Polynkin, A., Peyghambarian, N., Mansuripur, M.: Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett. 30(11), 1273–1275 (2005)

    Article  ADS  Google Scholar 

  • Soltanian, M., Ahmad, H., Khodaie, A., Amiri, I., Ismail, M., Harun, S.: A stable dual-wavelength thulium-doped fiber laser at 1.9 μm using photonic crystal fiber. Sci. Rep. 5, 14537 (2015a)

    Article  ADS  Google Scholar 

  • Soltanian, M.R.K., Amiri, I.S., Alavi, S.E., Ahmad, H.: Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber. J. Lightwave Technol. 33(24), 5038–5046 (2015b)

    Article  ADS  Google Scholar 

  • Soltanian, M.R.K., Sharbirin, A.S., Ariannejad, M.M., Amiri, I.S., Rue, R.M.D.L., Brambilla, G., Rahman, B.M.A., Grattan, K.T.V., Ahmad, H.: Variable waist-diameter Mach–Zehnder tapered-fiber interferometer as humidity and temperature sensor. IEEE Sens. J. 16(15), 5987–5992 (2016). doi:10.1109/JSEN.2016.2573961

    Article  Google Scholar 

  • Sun, A., Li, Z., Wei, T., Li, Y., Cui, P.: Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sens. Actuators B Chem. 142(1), 197–203 (2009)

    Article  Google Scholar 

  • Tian, Z., Yam, S.S., Loock, H.-P.: Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 33(10), 1105–1107 (2008)

    Article  ADS  Google Scholar 

  • White, G.: Thermal expansion of reference materials: copper, silica and silicon. J. Phys. D Appl. Phys. 6(17), 2017–2078 (1973)

    Article  Google Scholar 

  • Wo, J., Wang, G., Cui, Y., Sun, Q., Liang, R., Shum, P.P., Liu, D.: Refractive index sensor using microfiber-based Mach–Zehnder interferometer. Opt. Lett. 37(1), 67–69 (2012)

    Article  ADS  Google Scholar 

  • Wu, D.K., Kuhlmey, B.T., Eggleton, B.J.: Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34(3), 322–324 (2009)

    Article  ADS  Google Scholar 

  • Wu, Q., Semenova, Y., Wang, P., Farrell, G.: High sensitivity SMS fiber structure based refractometer–analysis and experiment. Opt. Express 19(9), 7937–7944 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanian, M.R.K., Amiri, I.S., Ariannejad, M.M. et al. A simple humidity sensor utilizing air-gap as sensing part of the Mach–Zehnder interferometer. Opt Quant Electron 49, 308 (2017). https://doi.org/10.1007/s11082-017-1140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1140-2

Keywords

Navigation