Skip to main content
Log in

Numerical simulation of low loss silicon photonic wire waveguide with multiple cladding layers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A different silicon photonic wire waveguide is proposed, which uses multiple thin cladding layers in order to reduce the index contrast between core and cladding interface. The reduced index contrast in the proposed waveguide has led to reduction in the scattering losses by 37% as compared to silicon wire waveguide for 400 nm × 220 nm waveguide dimension. The proposed waveguide has shown significant reduction in bending losses. It offers the bending loss of 0.0118 dB at the radius of 1 μm and 0.0063 dB for a radius of 2 μm at 1.55 μm wavelength as compared to 0.086 and 0.013 dB at the radius of 1 and 2 μm, respectively, offered by silicon photonic wire waveguide at 1.5 μm wavelength. The use of polymer material as top cladding layer resulted in decreasing the sensitivity of effective index against temperature for the designed waveguide by a factor of 2 as compared to silicon wire waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aslan, M.M., Webster, N.A., Byard, C.L., et al.: Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition. Thin Solid Films 518(17), 4935–4940 (2010)

    Article  ADS  Google Scholar 

  • Barwicz, T., Haus, H.: Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. Light. Technol. J. 23(9), 2719–2732 (2005)

    Article  Google Scholar 

  • Bolkhovityanov, Y.B., Pchelyakov, O.P.: III–V compounds-on-Si: heterostructure fabrication application and prospects. Open Nanosci. J. 3(1), 20–33 (2009)

    Article  ADS  Google Scholar 

  • Cardenas, J., Poitras, C.B., Robinson, J.T., Preston, K., Chen, L., Lipson, M.: Low loss etchless silicon photonic waveguides. Opt. Express 17(6), 4752–4757 (2009)

    Article  ADS  Google Scholar 

  • Driscoll, J.B., Osgood, R.M., Grote, R.R., Dadap, J.I.: Squeezing light in wires: fundamental optical properties of Si nanowire waveguides. J. Light. Technol. 33(14), 3116–3131 (2015)

    Article  ADS  Google Scholar 

  • Dumon, P., Bogaerts, W., Wiaux, V., et al.: Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004)

    Article  ADS  Google Scholar 

  • Green, W.M.J., Liu, X., Chen, X., Assefa, S., Osgood, R.M., Vlasov, Y.A.: Dispersion engineering of silicon nanophotonic wires using a thin film cladding. Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro Optics CLEO/QELS 1, 4–5 (2008)

    Google Scholar 

  • Grillot, F., Vivien, L., Laval, S., Pascal, D., Cassan, E.: Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides. IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004)

    Article  ADS  Google Scholar 

  • Grillot, F., Vivien, L., Laval, S.: Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides. J. Light. Technol. 24(2), 891–896 (2006)

    Article  ADS  Google Scholar 

  • Grillot, F., Vivien, L., Cassan, E., Laval, S.: Influence of waveguide geometry on scattering loss effects in submicron strip silicon-on-insulator waveguides. Optoelectron. IET 2(1), 1–5 (2008)

    Article  Google Scholar 

  • Guha, B., Cardenas, J., Lipson, M.: Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21(22), 3487–3493 (2013)

    Article  Google Scholar 

  • Hanu, L.G., Simon, G.P., Cheng, Y.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)

    Article  Google Scholar 

  • Hu, J., Feng, N., Carlie, N., Petit, L., Wang, J.: Low-loss high-index-contrast planar waveguides with graded-index cladding layers. Optics 15(22), 14566–14572 (2007)

    Google Scholar 

  • Jaberansary, E., Masaud, T.M.B., Milosevic, M.M., Nedeljkovic, M., Mashanovich, G.Z., Chong, H.M.H.: Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides. IEEE Photon. J. 5(3), 6601010 (2013)

    Article  Google Scholar 

  • Jiang, Z., Zhang, D.: Array waveguide grating multiplexer with high thermal stability on silicon. Optics Laser Technol. 37, 527–531 (2005)

    Article  ADS  Google Scholar 

  • Kamei, S., Iemura, K., Kaneko, A., Inoue, Y.: 1.5%-Δ athermal arrayed-waveguide grating multi/demultiplexer with very low loss groove design. Photonics 17(3), 72–73 (2005)

    Google Scholar 

  • Kang, J., Kim, J., Lee, W., Kim, J., Lee, J., Kim, J.: Low-loss fluorinated poly (arylene ether sulfide) waveguides with high thermal stability. J. Light. Technol. 19(6), 872–875 (2001)

    Article  ADS  Google Scholar 

  • Lee, M., Wu, M.: Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction. J. Microelectromechanical Syst. 15(2), 338–343 (2006)

    Article  Google Scholar 

  • Lee, K.K., Lim, D.R., Luan, H.-C., Agarwal, A., Foresi, J., Kimerling, L.C.: Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model. Appl. Phys. Lett. 77(11), 1617–1619 (2000)

    Article  ADS  Google Scholar 

  • Lee, K., Lim, D., Kimerling, L., Shin, J., Cerrina, F.: Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Lett. 26(23), 1888–1890 (2001)

    Article  ADS  Google Scholar 

  • Martinez, A., Cuesta-Soto, F., Garcia, J., et al.: Cadmium telluride: a silicon-compatible optical material as an alternative technology for building all-optical photonic devices. Proc. SPIE 6996, 699608–699612 (2008)

    Article  Google Scholar 

  • Maru, K., Abe, Y., Ito, M., Ishikawa, H., Himi, S.: 2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core. Photonics 17(3), 2325–2327 (2005)

    Google Scholar 

  • Massoubre, D., Wang, L., Chai, J., et al.: Single-crystalline 3C-SiC thin-film on large Si substrate for photonic applications SiC: properties and applications. NSTI Nanotech 2, 416–419 (2014)

    Google Scholar 

  • McNab, S., Moll, N., Vlasov, Y.: Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11(22), 2927–2939 (2003)

    Article  ADS  Google Scholar 

  • Pandraud, G., Margallo-Balbas, E., Yang, C.K., French, P.J.: Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides. J. Light. Technol. 29(5), 744–749 (2011)

    Article  ADS  Google Scholar 

  • Raghunathan, V., Izuhara, T., Michel, J., Kimerling, L.: Stability of polymer-dielectric bi-layers for athermal silicon photonics. Opt. Express 20(14), 16059–16066 (2012)

    Article  ADS  Google Scholar 

  • Sakai, A., Hara, G., Baba, T.: Propagation characteristics of ultrahigh-∆ optical waveguide on silicon-on-insulator substrate. Jpn. J. Appl. Phys. 40(4), 383–385 (2001)

    Article  ADS  Google Scholar 

  • Salih, M., Janani, K., Chen, X., Jacobson, E., Gautam, S., Mickelson, A.: Losses of slot mode devices. J. Light. 34(16), 3901–3907 (2016)

    Article  Google Scholar 

  • Säynätjoki, A., Alasaarela, T., Khanna, A., et al.: Angled sidewalls in silicon slot waveguides: conformal filling and mode properties. Opt. Express 17(23), 21066–21076 (2009)

    Article  ADS  Google Scholar 

  • Serpa-imbett, C.M., Hernandez-figueroa, H.E.: Novel bending loss reduction technique for the TM Mode in SOI-based waveguides. IEEE Photon. Technol. Lett. 28(8), 872–875 (2016)

    Article  ADS  Google Scholar 

  • Sheng, Z., Dai, D., He, S.: Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends. IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009)

    Article  Google Scholar 

  • Sparacin, D., Spector, S.: Silicon waveguide sidewall smoothing by wet chemical oxidation. Light. Technol. J. 23(8), 2455–2461 (2005)

    Article  Google Scholar 

  • Teng, J., Dumon, P., Bogaerts, W., et al.: Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 17(17), 14627–14633 (2009)

    Article  ADS  Google Scholar 

  • Vlasov, Y., McNab, S.: Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622–1631 (2004)

    Article  ADS  Google Scholar 

  • Wang, L., Bogaerts, W., Dumon, P., et al.: Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides. Appl. Opt. 51(9), 1251–1253 (2012)

    Article  ADS  Google Scholar 

  • Weigand, B., Stolze, M., Rebel, F., et al.: Fabrication of ridge waveguides in LiNbO3. Proc. 2012 21st IEEE Int. Symp. Appl. Ferroelectr. held jointly with 11th IEEE Eur. Conf. Appl. Polar Dielectr. IEEE PFM, ISAF/ECAPD/PFM. pp. 3–6 (2012)

  • Yap, K.P., Delage, A., Lapointe, J., et al.: Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides. J Light. Technol. 27(18), 3999–4008 (2009)

    Article  Google Scholar 

  • Ye, W.N., Michel, J., Kimerling, L.C., Eldada, L: Polymer-cladded athermal high-index-contrast waveguides. Proc. SPIE 68970S (2008)

  • Ye, W.N., Michel, J., Kimerling, L.C.: Athermal high-index-contrast waveguide design. IEEE Photon. Technol. Lett. 20(11), 885–887 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Kedia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedia, J., Gupta, N. Numerical simulation of low loss silicon photonic wire waveguide with multiple cladding layers. Opt Quant Electron 49, 185 (2017). https://doi.org/10.1007/s11082-017-1021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1021-8

Keywords

Navigation