Skip to main content
Log in

Enhanced the tunable omnidirectional photonic band gaps in the two-dimensional plasma photonic crystals

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the features of omnidirectional band gap (OBG) in the two-dimensional (2D) plasma photonic crystals (PPCs) with triangular lattices are theoretically studied in detail by the modified plane wave expansion method as the off-plane incidence wave vector is considered, which are composed of the non-magnetized plasma cylinders inserted into the homogeneous and isotropic dielectric background. The simulated results demonstrate that a flatband region and the OBG can be obtained in the proposed PPCs. The influences of the radius of inserted cylinder and plasma frequency on the OBG are investigated. The calculated results illustrate that not only the tunable OBG can be obtained but also the achieved OBG also can be enlarged by optimizing those parameters. To enhance the OBGs, two novel configurations of PPCs are present. The computed results reveal that the proposed two configurations have the advantages of obtaining the larger OBGs compared to the conventional 2D PPCs since the symmetry of 2D PPCs is broken, and the OBGs also can be manipulated obviously by changing the geometric parameters of such two PCs structures. Introducing the anisotropic dielectric (uniaxial material) into the proposed 2D PPCs to enlarge the OBGs also is studied. The effects of ordinary-refractive and extraordinary-refractive indices of uniaxial material on the properties of OBGs also are investigated in theory, respectively. The computed results show that the OBGs can be enlarged by introducing the uniaxial material, and the OBGs also can be tuned by changing the parameters of uniaxial material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aly, A.H., Elsayed, H.A., El-Naggar, S.A.: The properties of cutoff frequency in two-dimensional superconductor photonic crystals. J. Mod. Opt. 61, 1064–1068 (2014)

    Article  ADS  Google Scholar 

  • Ardakani, A.G.: Nonreciprocal electromagnetic wave propagation in one-dimensional ternary magnetized plasma photonic crystals. J. Opt. Soc. Am. B 31, 332–339 (2014)

    Article  ADS  Google Scholar 

  • Biancalana, F.: All-optical diode action with quasiperiodic photonic crystals. J. Appl. Phys. 104, 093113 (2008)

    Article  ADS  Google Scholar 

  • Chern, R.L., Chang, C.C., Chang, C.C.: Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions. Phys. Rev. E 73, 036605 (2006)

    Article  ADS  Google Scholar 

  • Feng, X.P., Arakawa, Y.: Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal. IEEE J. Quantum Electron. 32, 535–542 (1996)

    Article  ADS  Google Scholar 

  • Fu, T., Yang, Z., Shi, Z., Lan, F., Li, D., Gao, X.: Dispersion properties of a 2D magnetized plasma metallic photonic crystal. Phys. Plasmas 20, 023109 (2013)

    Article  ADS  Google Scholar 

  • Ginzburg, V.L.: The Propagation of Electromagnetic Wave in Plasma. Pergamon, Oxford (1970)

    Google Scholar 

  • Haas, T., Hesse, A., Doll, T.: Omnidirectional two-dimensional photonic crystal band gap structures. Phys. Rev. B 73, 045130 (2006)

    Article  ADS  Google Scholar 

  • Hamidi, S.M.: Optical and magneto-optical properties of onedimensional magnetized coupled resonator plasma photonic crystals. Phys. Plasmas 19, 012503 (2012)

    Article  ADS  Google Scholar 

  • Hart, S.D., Maskaly, G.R., Temelkuran, B., Prideaux, P.H., Joannopulos, J.D., Fink, Y.: External reflection from omnidirectional dielectric mirror fibers. Science 296, 510–513 (2002)

    Article  ADS  Google Scholar 

  • Hojo, H., Mase, A.: Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals. Plasma Fusion Res. 80, 89–90 (2004)

    Article  Google Scholar 

  • Joannopoulos, J.J., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, New Jersey (1995)

    MATH  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • King, T., Kuo, W., Yang, T., Bian, T., Wu, C.: Magnetic-field dependence of effective plasma frequency for a plasma photonic crystal. IEEE Photon. J. 5, 4700110 (2013)

    Article  Google Scholar 

  • Kuzmiak, V., Maradudin, A.A.: Photonic band structure of one-and two-dimensional periodic systems with metallic components in the presence of dissipation. Phys. Rev. B 55, 7427–7444 (1997)

    Article  ADS  Google Scholar 

  • Li, Z.Y., Xia, Y.: Omnidirectional absolute band gaps in two-dimensional photonic crystals. Phys. Rev. B 64, 153108 (2001)

    Article  ADS  Google Scholar 

  • Li, Z., Gu, B., Yang, G.: Improvement of absolute band gaps in 2D photonic crystals by anisotropy in dielectricity. Eur. Phys. J. B 11, 65–73 (1999)

    Article  ADS  Google Scholar 

  • Li, C.Z., Liu, S.B., Kong, X.K., Zhang, H.F., Bian, B.R., Zhang, X.Y.: A novel comb-like plasma photonic crystal filter in the presence of evanescent wave. IEEE Trans. Plasma Sci. 39, 1969–1973 (2011)

    Article  ADS  Google Scholar 

  • Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.J.: High transmission through sharp bends in photonic crystals waveguide. Phys. Rev. Lett. 77, 3787–3790 (1996)

    Article  ADS  Google Scholar 

  • Qi, L.: Photonic band structures of two-dimensional magnetized plasma photonic crystals. J. Appl. Phys. 111, 073301 (2012)

    Article  ADS  Google Scholar 

  • Qi, L., Zhang, X.: Band gap characteristics of plasma with periodically varying external magnetic field. Solid State Commun. 151, 1838–1841 (2011)

    Article  ADS  Google Scholar 

  • Russell, P.: Photonic crystals fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  • Sakai, O., Tachibana, K.: Plasma as metamaterial: a review. Plasma Sources Sci. Technol. 21, 013001 (2012)

    Article  ADS  Google Scholar 

  • Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin (2001)

    Book  Google Scholar 

  • Shiverhwari, L.: Zero permittivity band characteristics in one dimensional plasma dielectric photonic crystal. Opt.-Int. J. Light Electron. Opt. 122, 1523–1526 (2011)

    Article  Google Scholar 

  • Shukla, S., Prasad, S., Singh, V.: Properties of surface modes in one dimensional plasma photonic crystals. Phys. Plasmas 22, 022122 (2015)

    Article  ADS  Google Scholar 

  • Sözüer, H., Haus, J., Inguva, R.: Photonic bands: convergence problems with the plane-wave method. Phy. Rev. B 45, 13962 (1992)

    Article  ADS  Google Scholar 

  • Tian, H., Zi, J.: One-dimensional tunable photonic crystals by means of external magnetic field. Opt. Commun. 252, 321–328 (2005)

    Article  ADS  Google Scholar 

  • Winn, J.N., Fink, Y., Fan, S., Joannopulos, J.D.: Omnidirectional reflection from a one-dimensional photonic crystals. Opt. Lett. 23, 1573–1575 (1998)

    Article  ADS  Google Scholar 

  • Xiang, Y., Dai, X., Wen, S., Dan, F.: Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials. J. Opt. Soc. Am. A 23, A28–A32 (2007)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission of photons in solidstate physics and electronics. Phys. Rev. Lett. 58, 2059–2061 (1987)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Liu, S.B.: Study on the properties of switching bandgap and surface plasmon modes in 3-D plasma photonic crystals with pyrochlore lattices in core-shell structure. IEEE Trans. Plasma Sci. 42, 1839–1846 (2014)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Liu, S.B., Kong, X.K., Zou, L., Li, C.Z., Qing, W.S.: Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer. Phys. Plasmas 19, 022103 (2012a)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Liu, S.B., Kong, X.K., Bian, B.R., Dai, Y.: Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure. Phys. Plasmas 19, 112102 (2012b)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Liu, S.B., Kong, X.K., Zhou, L., Li, C.Z., Bian, B.R.: Enlarged omnidirectional photonic band gap in heterostructure of plasma and dielectric photonic crystals. Opt.-Int. J. Light Electron. Opt. 124, 751–756 (2013a)

    Article  Google Scholar 

  • Zhang, H.F., Liu, S.B., Kong, X.K., Chen, C., Bian, B.R.: The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice. Opt. Commun. 288, 82–90 (2013b)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Liu, S.B., Jiang, C.J.: The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals as the mixed polarized modes considered. J. Plasma Phys. 81, 905810201 (2015a)

    Article  MathSciNet  Google Scholar 

  • Zhang, H.F., Liu, S.B., Li, B.X., Chen, C.Q.: Analyzing the properties of acceptor mode in two-dimensional plasma photonic crystals based on a modified finite-difference frequency-domain method. Phys. Plasmas 22, 112103 (2015b)

    Article  Google Scholar 

  • Zhang, H.-F., Ding, G.-W., Li, H.-M., Liu, S.-B.: Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure. Phys. Plasmas 22, 022105 (2015c)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Liu, S.B., Li, B.X.: Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals. Phys. Plasmas 23, 012105 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61307052) and Chinese Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1501016A), and Project Funded by China Postdoctoral Science Foundation (Grant No. 2015M581790), and the special grade of the financial support from the China Postdoctoral Science Foundation (Grant No. 2016T90455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HF., Liu, SB. Enhanced the tunable omnidirectional photonic band gaps in the two-dimensional plasma photonic crystals. Opt Quant Electron 48, 508 (2016). https://doi.org/10.1007/s11082-016-0782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0782-9

Keywords

Navigation